Loading…
High-density polyethylene damage at extreme tensile conditions
In-situ and postmortem observations of the dynamic tensile failure and damage evolution of high-density polyethylene (HDPE) are made during Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading. The Dyn-Ten-Ext technique probes the tensile response of materials at large strains (>1) and high strain-rat...
Saved in:
Published in: | Journal of physics. Conference series 2014-01, Vol.500 (11), p.112011-6 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In-situ and postmortem observations of the dynamic tensile failure and damage evolution of high-density polyethylene (HDPE) are made during Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading. The Dyn-Ten-Ext technique probes the tensile response of materials at large strains (>1) and high strain-rates (>105 s−1) by firing projectiles through a conical die. Postmortem sectioning elucidates a mechanism of internal damage inception and progression. X-ray computed tomography corroborates shear damage with cracks nearly aligned with the extrusion axis but separated by unfailed internal bridges of material. In-situ measurements of damage are made with the impact system for ultrafast synchrotron experiments (IMPULSE) using the advanced imaging X-ray methods available at the Advanced Photon Source. Multiple frame phase-contrast imaging (PCI) elucidates the evolution of damage features in HDPE during Dyn-Ten-Ext loading that is observed in postmortem sectioning and X-ray tomography. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/500/11/112011 |