Loading…

Development of a 2 m Pr sub(2)Fe sub(14)B Cryogenic Permanent Magnet Undulator at SOLEIL

A 2 m long 18 mm period Cryogenic Permanent Magnet Undulator (CPMU) has been constructed at SOLEIL. Praseodymium was chosen instead of Neodymium magnetic material, because of the absence of the Spin Reorientation Transition phenomenon. The use of Pr sub(2)Fe sub(14)B with a remnence B sub(r) of 1.35...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2013-01, Vol.425, p.1-4
Main Authors: Benabderrahmane, C, Valleau, M, Berteaud, P, Tavakoli, K, Marlats, J L, Nagaoka, R, Bechu, N, Zerbib, D, Brunelle, P, Chapuis, L, Dalle, D, Herbeaux, C, Lestrade, A, Louvet, M, Couprie, M E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title Journal of physics. Conference series
container_volume 425
creator Benabderrahmane, C
Valleau, M
Berteaud, P
Tavakoli, K
Marlats, J L
Nagaoka, R
Bechu, N
Zerbib, D
Brunelle, P
Chapuis, L
Dalle, D
Herbeaux, C
Lestrade, A
Louvet, M
Couprie, M E
description A 2 m long 18 mm period Cryogenic Permanent Magnet Undulator (CPMU) has been constructed at SOLEIL. Praseodymium was chosen instead of Neodymium magnetic material, because of the absence of the Spin Reorientation Transition phenomenon. The use of Pr sub(2)Fe sub(14)B with a remnence B sub(r) of 1.35 T at room temperature enables to increase the peak magnetic field at 5.5 mm minimum gap, from 1.04 T at room temperature to 1.15 T at a cryogenic temperature of 77 K. The magnetic field reaches 1.91 T at a gap of 3 mm in case of FELs applications. Different corrections were performed first at room temperature to adjust the phase error, the electron trajectory and to reduce the multipolar components. A dedicated magnetic measurement bench to check the magnetic performance of the undulator at low temperature has been designed and assembled inside the vacuum chamber. The results of the magnetic measurements at low temperature and at room temperature are compared. The CPMU has been installed and commissioned in the storage ring.
doi_str_mv 10.1088/1742-6596/425/3/032019
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762104376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762104376</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17621043763</originalsourceid><addsrcrecordid>eNqVjFsLAUEYhidRjn9B3yUX7BzW7rp1iiIK5U6Dj2h2hplZ5d87JPfem_ep90BIndE2o0kSsDjkrajTjYKQdwIRUMEp6-ZI6Rfkf5wkRVJ27kKpeCkukc0A76jMNUXtwRxBAocUFhZctmvw5gg_wMJmD_r2YU6oz3tYoE2lfi9m8qTRw1ofMiW9sSA9LOfT4WRaJYWjVA5rX6-Qxmi46o9bV2tuGTq_Tc9uj0q9jkzmtiyOOKOhiCPxR_UJfNtKFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762104376</pqid></control><display><type>article</type><title>Development of a 2 m Pr sub(2)Fe sub(14)B Cryogenic Permanent Magnet Undulator at SOLEIL</title><source>ProQuest - Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Benabderrahmane, C ; Valleau, M ; Berteaud, P ; Tavakoli, K ; Marlats, J L ; Nagaoka, R ; Bechu, N ; Zerbib, D ; Brunelle, P ; Chapuis, L ; Dalle, D ; Herbeaux, C ; Lestrade, A ; Louvet, M ; Couprie, M E</creator><creatorcontrib>Benabderrahmane, C ; Valleau, M ; Berteaud, P ; Tavakoli, K ; Marlats, J L ; Nagaoka, R ; Bechu, N ; Zerbib, D ; Brunelle, P ; Chapuis, L ; Dalle, D ; Herbeaux, C ; Lestrade, A ; Louvet, M ; Couprie, M E</creatorcontrib><description>A 2 m long 18 mm period Cryogenic Permanent Magnet Undulator (CPMU) has been constructed at SOLEIL. Praseodymium was chosen instead of Neodymium magnetic material, because of the absence of the Spin Reorientation Transition phenomenon. The use of Pr sub(2)Fe sub(14)B with a remnence B sub(r) of 1.35 T at room temperature enables to increase the peak magnetic field at 5.5 mm minimum gap, from 1.04 T at room temperature to 1.15 T at a cryogenic temperature of 77 K. The magnetic field reaches 1.91 T at a gap of 3 mm in case of FELs applications. Different corrections were performed first at room temperature to adjust the phase error, the electron trajectory and to reduce the multipolar components. A dedicated magnetic measurement bench to check the magnetic performance of the undulator at low temperature has been designed and assembled inside the vacuum chamber. The results of the magnetic measurements at low temperature and at room temperature are compared. The CPMU has been installed and commissioned in the storage ring.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/425/3/032019</identifier><language>eng</language><subject>Adjustment ; Cryogenic temperature ; Magnetic fields ; Magnetic measurement ; Permanent magnets ; Phase error ; Praseodymium ; Vacuum chambers</subject><ispartof>Journal of physics. Conference series, 2013-01, Vol.425, p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids></links><search><creatorcontrib>Benabderrahmane, C</creatorcontrib><creatorcontrib>Valleau, M</creatorcontrib><creatorcontrib>Berteaud, P</creatorcontrib><creatorcontrib>Tavakoli, K</creatorcontrib><creatorcontrib>Marlats, J L</creatorcontrib><creatorcontrib>Nagaoka, R</creatorcontrib><creatorcontrib>Bechu, N</creatorcontrib><creatorcontrib>Zerbib, D</creatorcontrib><creatorcontrib>Brunelle, P</creatorcontrib><creatorcontrib>Chapuis, L</creatorcontrib><creatorcontrib>Dalle, D</creatorcontrib><creatorcontrib>Herbeaux, C</creatorcontrib><creatorcontrib>Lestrade, A</creatorcontrib><creatorcontrib>Louvet, M</creatorcontrib><creatorcontrib>Couprie, M E</creatorcontrib><title>Development of a 2 m Pr sub(2)Fe sub(14)B Cryogenic Permanent Magnet Undulator at SOLEIL</title><title>Journal of physics. Conference series</title><description>A 2 m long 18 mm period Cryogenic Permanent Magnet Undulator (CPMU) has been constructed at SOLEIL. Praseodymium was chosen instead of Neodymium magnetic material, because of the absence of the Spin Reorientation Transition phenomenon. The use of Pr sub(2)Fe sub(14)B with a remnence B sub(r) of 1.35 T at room temperature enables to increase the peak magnetic field at 5.5 mm minimum gap, from 1.04 T at room temperature to 1.15 T at a cryogenic temperature of 77 K. The magnetic field reaches 1.91 T at a gap of 3 mm in case of FELs applications. Different corrections were performed first at room temperature to adjust the phase error, the electron trajectory and to reduce the multipolar components. A dedicated magnetic measurement bench to check the magnetic performance of the undulator at low temperature has been designed and assembled inside the vacuum chamber. The results of the magnetic measurements at low temperature and at room temperature are compared. The CPMU has been installed and commissioned in the storage ring.</description><subject>Adjustment</subject><subject>Cryogenic temperature</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Permanent magnets</subject><subject>Phase error</subject><subject>Praseodymium</subject><subject>Vacuum chambers</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjFsLAUEYhidRjn9B3yUX7BzW7rp1iiIK5U6Dj2h2hplZ5d87JPfem_ep90BIndE2o0kSsDjkrajTjYKQdwIRUMEp6-ZI6Rfkf5wkRVJ27kKpeCkukc0A76jMNUXtwRxBAocUFhZctmvw5gg_wMJmD_r2YU6oz3tYoE2lfi9m8qTRw1ofMiW9sSA9LOfT4WRaJYWjVA5rX6-Qxmi46o9bV2tuGTq_Tc9uj0q9jkzmtiyOOKOhiCPxR_UJfNtKFQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Benabderrahmane, C</creator><creator>Valleau, M</creator><creator>Berteaud, P</creator><creator>Tavakoli, K</creator><creator>Marlats, J L</creator><creator>Nagaoka, R</creator><creator>Bechu, N</creator><creator>Zerbib, D</creator><creator>Brunelle, P</creator><creator>Chapuis, L</creator><creator>Dalle, D</creator><creator>Herbeaux, C</creator><creator>Lestrade, A</creator><creator>Louvet, M</creator><creator>Couprie, M E</creator><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Development of a 2 m Pr sub(2)Fe sub(14)B Cryogenic Permanent Magnet Undulator at SOLEIL</title><author>Benabderrahmane, C ; Valleau, M ; Berteaud, P ; Tavakoli, K ; Marlats, J L ; Nagaoka, R ; Bechu, N ; Zerbib, D ; Brunelle, P ; Chapuis, L ; Dalle, D ; Herbeaux, C ; Lestrade, A ; Louvet, M ; Couprie, M E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17621043763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjustment</topic><topic>Cryogenic temperature</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Permanent magnets</topic><topic>Phase error</topic><topic>Praseodymium</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benabderrahmane, C</creatorcontrib><creatorcontrib>Valleau, M</creatorcontrib><creatorcontrib>Berteaud, P</creatorcontrib><creatorcontrib>Tavakoli, K</creatorcontrib><creatorcontrib>Marlats, J L</creatorcontrib><creatorcontrib>Nagaoka, R</creatorcontrib><creatorcontrib>Bechu, N</creatorcontrib><creatorcontrib>Zerbib, D</creatorcontrib><creatorcontrib>Brunelle, P</creatorcontrib><creatorcontrib>Chapuis, L</creatorcontrib><creatorcontrib>Dalle, D</creatorcontrib><creatorcontrib>Herbeaux, C</creatorcontrib><creatorcontrib>Lestrade, A</creatorcontrib><creatorcontrib>Louvet, M</creatorcontrib><creatorcontrib>Couprie, M E</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benabderrahmane, C</au><au>Valleau, M</au><au>Berteaud, P</au><au>Tavakoli, K</au><au>Marlats, J L</au><au>Nagaoka, R</au><au>Bechu, N</au><au>Zerbib, D</au><au>Brunelle, P</au><au>Chapuis, L</au><au>Dalle, D</au><au>Herbeaux, C</au><au>Lestrade, A</au><au>Louvet, M</au><au>Couprie, M E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a 2 m Pr sub(2)Fe sub(14)B Cryogenic Permanent Magnet Undulator at SOLEIL</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>425</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A 2 m long 18 mm period Cryogenic Permanent Magnet Undulator (CPMU) has been constructed at SOLEIL. Praseodymium was chosen instead of Neodymium magnetic material, because of the absence of the Spin Reorientation Transition phenomenon. The use of Pr sub(2)Fe sub(14)B with a remnence B sub(r) of 1.35 T at room temperature enables to increase the peak magnetic field at 5.5 mm minimum gap, from 1.04 T at room temperature to 1.15 T at a cryogenic temperature of 77 K. The magnetic field reaches 1.91 T at a gap of 3 mm in case of FELs applications. Different corrections were performed first at room temperature to adjust the phase error, the electron trajectory and to reduce the multipolar components. A dedicated magnetic measurement bench to check the magnetic performance of the undulator at low temperature has been designed and assembled inside the vacuum chamber. The results of the magnetic measurements at low temperature and at room temperature are compared. The CPMU has been installed and commissioned in the storage ring.</abstract><doi>10.1088/1742-6596/425/3/032019</doi></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2013-01, Vol.425, p.1-4
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1762104376
source ProQuest - Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Adjustment
Cryogenic temperature
Magnetic fields
Magnetic measurement
Permanent magnets
Phase error
Praseodymium
Vacuum chambers
title Development of a 2 m Pr sub(2)Fe sub(14)B Cryogenic Permanent Magnet Undulator at SOLEIL
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%202%20m%20Pr%20sub(2)Fe%20sub(14)B%20Cryogenic%20Permanent%20Magnet%20Undulator%20at%20SOLEIL&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Benabderrahmane,%20C&rft.date=2013-01-01&rft.volume=425&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/425/3/032019&rft_dat=%3Cproquest%3E1762104376%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_17621043763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762104376&rft_id=info:pmid/&rfr_iscdi=true