Loading…
High energy-resolution electron energy-loss spectroscopy and soft-x-ray emission spectroscopy studies of amorphous diamond transformed from neutron-irradiated graphite
High energy-resolution electron energy-loss spectroscopy measurements were performed for amorphous diamond (am-DIA), which was synthesized from neutron-irradiated graphite by shock compression, by using a monochromator transmission electron microscope (TEM). Soft-X-ray emission spectroscopy (SXES) m...
Saved in:
Published in: | Journal of physics. Conference series 2014-05, Vol.500 (19), p.192013-5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High energy-resolution electron energy-loss spectroscopy measurements were performed for amorphous diamond (am-DIA), which was synthesized from neutron-irradiated graphite by shock compression, by using a monochromator transmission electron microscope (TEM). Soft-X-ray emission spectroscopy (SXES) measurements were performed by a wavelength-dispersive type spectrometer attached to the monochromator TEM. A volume plasmon peak of am-DIA is observed at 32.5 eV, which is a little smaller than that of crystalline diamond (c-DIA). The smaller plasmon energy of am-DIA indicates a smaller valence electron density of am-DIA than that of c-DIA. From the onset energies of the K-shell excitation and the SXES spectra, the band gap energy of am-DIA is estimated to be 4 eV, which is similar to the value, 3.9 eV, from the valence electron excitation spectrum and reported values, 3.5-4.5 eV, for the am-DIA synthesized from C60 fullerene by shock compression. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/500/19/192013 |