Loading…
Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material
Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed c...
Saved in:
Published in: | AIChE journal 2015-11, Vol.61 (11), p.3786-3803 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673 |
---|---|
cites | cdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673 |
container_end_page | 3803 |
container_issue | 11 |
container_start_page | 3786 |
container_title | AIChE journal |
container_volume | 61 |
creator | Chen, Daifen Wang, Hanzhi Zhang, Shundong Tade, Moses O. Shao, Zongping Chen, Huili |
description | Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015 |
doi_str_mv | 10.1002/aic.14881 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762109833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1732815264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</originalsourceid><addsrcrecordid>eNqNkU9PGzEQxa2KSg1pD_0GlriUwxL_XXuPKEBAovRCyw3L8c4WU2cN9q6SfHsMgR4qIfU0mqffG83TQ-grJUeUEDaz3h1RoTX9gCZUClXJhsg9NCGE0KoI9BPaz_m-bExpNkG338cw-OxsALyKLQTcxYRzDL7FceNbwN1YRAch4LUf7jAEcEMqJHaxH6zvff8br_wG2mehHd3wItgBkrfhM_rY2ZDhy-ucop9np9fz8-ryx-JifnxZOSk4rXjDtbYCNOHQLjtouaCqploz3RFRLxstGV8qxpyuORctc5IupVJ1zbWwteJT9G139yHFxxHyYFYlVHna9hDHbMo1RkmjOf8PlDNNJatFQQ_-Qe_jmPoSpFBMEq5k-WCKDneUSzHnBJ15SH5l09ZQYp5LMaUU81JKYWc7du0DbN8HzfHF_M1R7Rw-D7D567Dpjym5lTQ3VwvTXJ03i5PrX4byJ7PSms0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725037566</pqid></control><display><type>article</type><title>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chen, Daifen ; Wang, Hanzhi ; Zhang, Shundong ; Tade, Moses O. ; Shao, Zongping ; Chen, Huili</creator><creatorcontrib>Chen, Daifen ; Wang, Hanzhi ; Zhang, Shundong ; Tade, Moses O. ; Shao, Zongping ; Chen, Huili</creatorcontrib><description>Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14881</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Boundaries ; COMSOL multiphysics model ; Conduction ; electrochemical reaction ; Electrodes ; electronic current leakage ; Mathematical models ; Microstructure ; mixed ion-electron conductor ; Percolation ; percolation theory ; Simulation ; Solid oxide fuel cells ; Volt-ampere characteristics</subject><ispartof>AIChE journal, 2015-11, Vol.61 (11), p.3786-3803</ispartof><rights>2015 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</citedby><cites>FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Chen, Daifen</creatorcontrib><creatorcontrib>Wang, Hanzhi</creatorcontrib><creatorcontrib>Zhang, Shundong</creatorcontrib><creatorcontrib>Tade, Moses O.</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Chen, Huili</creatorcontrib><title>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015</description><subject>Accuracy</subject><subject>Boundaries</subject><subject>COMSOL multiphysics model</subject><subject>Conduction</subject><subject>electrochemical reaction</subject><subject>Electrodes</subject><subject>electronic current leakage</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>mixed ion-electron conductor</subject><subject>Percolation</subject><subject>percolation theory</subject><subject>Simulation</subject><subject>Solid oxide fuel cells</subject><subject>Volt-ampere characteristics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU9PGzEQxa2KSg1pD_0GlriUwxL_XXuPKEBAovRCyw3L8c4WU2cN9q6SfHsMgR4qIfU0mqffG83TQ-grJUeUEDaz3h1RoTX9gCZUClXJhsg9NCGE0KoI9BPaz_m-bExpNkG338cw-OxsALyKLQTcxYRzDL7FceNbwN1YRAch4LUf7jAEcEMqJHaxH6zvff8br_wG2mehHd3wItgBkrfhM_rY2ZDhy-ucop9np9fz8-ryx-JifnxZOSk4rXjDtbYCNOHQLjtouaCqploz3RFRLxstGV8qxpyuORctc5IupVJ1zbWwteJT9G139yHFxxHyYFYlVHna9hDHbMo1RkmjOf8PlDNNJatFQQ_-Qe_jmPoSpFBMEq5k-WCKDneUSzHnBJ15SH5l09ZQYp5LMaUU81JKYWc7du0DbN8HzfHF_M1R7Rw-D7D567Dpjym5lTQ3VwvTXJ03i5PrX4byJ7PSms0</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Chen, Daifen</creator><creator>Wang, Hanzhi</creator><creator>Zhang, Shundong</creator><creator>Tade, Moses O.</creator><creator>Shao, Zongping</creator><creator>Chen, Huili</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>201511</creationdate><title>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</title><author>Chen, Daifen ; Wang, Hanzhi ; Zhang, Shundong ; Tade, Moses O. ; Shao, Zongping ; Chen, Huili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Boundaries</topic><topic>COMSOL multiphysics model</topic><topic>Conduction</topic><topic>electrochemical reaction</topic><topic>Electrodes</topic><topic>electronic current leakage</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>mixed ion-electron conductor</topic><topic>Percolation</topic><topic>percolation theory</topic><topic>Simulation</topic><topic>Solid oxide fuel cells</topic><topic>Volt-ampere characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Daifen</creatorcontrib><creatorcontrib>Wang, Hanzhi</creatorcontrib><creatorcontrib>Zhang, Shundong</creatorcontrib><creatorcontrib>Tade, Moses O.</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Chen, Huili</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Daifen</au><au>Wang, Hanzhi</au><au>Zhang, Shundong</au><au>Tade, Moses O.</au><au>Shao, Zongping</au><au>Chen, Huili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2015-11</date><risdate>2015</risdate><volume>61</volume><issue>11</issue><spage>3786</spage><epage>3803</epage><pages>3786-3803</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14881</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2015-11, Vol.61 (11), p.3786-3803 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762109833 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Accuracy Boundaries COMSOL multiphysics model Conduction electrochemical reaction Electrodes electronic current leakage Mathematical models Microstructure mixed ion-electron conductor Percolation percolation theory Simulation Solid oxide fuel cells Volt-ampere characteristics |
title | Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20model%20for%20solid%20oxide%20fuel%20cell%20with%20electrode%20containing%20mixed%20conducting%20material&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Daifen&rft.date=2015-11&rft.volume=61&rft.issue=11&rft.spage=3786&rft.epage=3803&rft.pages=3786-3803&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14881&rft_dat=%3Cproquest_cross%3E1732815264%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1725037566&rft_id=info:pmid/&rfr_iscdi=true |