Loading…

Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material

Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed c...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2015-11, Vol.61 (11), p.3786-3803
Main Authors: Chen, Daifen, Wang, Hanzhi, Zhang, Shundong, Tade, Moses O., Shao, Zongping, Chen, Huili
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673
cites cdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673
container_end_page 3803
container_issue 11
container_start_page 3786
container_title AIChE journal
container_volume 61
creator Chen, Daifen
Wang, Hanzhi
Zhang, Shundong
Tade, Moses O.
Shao, Zongping
Chen, Huili
description Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015
doi_str_mv 10.1002/aic.14881
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762109833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1732815264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</originalsourceid><addsrcrecordid>eNqNkU9PGzEQxa2KSg1pD_0GlriUwxL_XXuPKEBAovRCyw3L8c4WU2cN9q6SfHsMgR4qIfU0mqffG83TQ-grJUeUEDaz3h1RoTX9gCZUClXJhsg9NCGE0KoI9BPaz_m-bExpNkG338cw-OxsALyKLQTcxYRzDL7FceNbwN1YRAch4LUf7jAEcEMqJHaxH6zvff8br_wG2mehHd3wItgBkrfhM_rY2ZDhy-ucop9np9fz8-ryx-JifnxZOSk4rXjDtbYCNOHQLjtouaCqploz3RFRLxstGV8qxpyuORctc5IupVJ1zbWwteJT9G139yHFxxHyYFYlVHna9hDHbMo1RkmjOf8PlDNNJatFQQ_-Qe_jmPoSpFBMEq5k-WCKDneUSzHnBJ15SH5l09ZQYp5LMaUU81JKYWc7du0DbN8HzfHF_M1R7Rw-D7D567Dpjym5lTQ3VwvTXJ03i5PrX4byJ7PSms0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725037566</pqid></control><display><type>article</type><title>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Daifen ; Wang, Hanzhi ; Zhang, Shundong ; Tade, Moses O. ; Shao, Zongping ; Chen, Huili</creator><creatorcontrib>Chen, Daifen ; Wang, Hanzhi ; Zhang, Shundong ; Tade, Moses O. ; Shao, Zongping ; Chen, Huili</creatorcontrib><description>Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.14881</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Boundaries ; COMSOL multiphysics model ; Conduction ; electrochemical reaction ; Electrodes ; electronic current leakage ; Mathematical models ; Microstructure ; mixed ion-electron conductor ; Percolation ; percolation theory ; Simulation ; Solid oxide fuel cells ; Volt-ampere characteristics</subject><ispartof>AIChE journal, 2015-11, Vol.61 (11), p.3786-3803</ispartof><rights>2015 American Institute of Chemical Engineers</rights><rights>Copyright American Institute of Chemical Engineers Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</citedby><cites>FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Chen, Daifen</creatorcontrib><creatorcontrib>Wang, Hanzhi</creatorcontrib><creatorcontrib>Zhang, Shundong</creatorcontrib><creatorcontrib>Tade, Moses O.</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Chen, Huili</creatorcontrib><title>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015</description><subject>Accuracy</subject><subject>Boundaries</subject><subject>COMSOL multiphysics model</subject><subject>Conduction</subject><subject>electrochemical reaction</subject><subject>Electrodes</subject><subject>electronic current leakage</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>mixed ion-electron conductor</subject><subject>Percolation</subject><subject>percolation theory</subject><subject>Simulation</subject><subject>Solid oxide fuel cells</subject><subject>Volt-ampere characteristics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU9PGzEQxa2KSg1pD_0GlriUwxL_XXuPKEBAovRCyw3L8c4WU2cN9q6SfHsMgR4qIfU0mqffG83TQ-grJUeUEDaz3h1RoTX9gCZUClXJhsg9NCGE0KoI9BPaz_m-bExpNkG338cw-OxsALyKLQTcxYRzDL7FceNbwN1YRAch4LUf7jAEcEMqJHaxH6zvff8br_wG2mehHd3wItgBkrfhM_rY2ZDhy-ucop9np9fz8-ryx-JifnxZOSk4rXjDtbYCNOHQLjtouaCqploz3RFRLxstGV8qxpyuORctc5IupVJ1zbWwteJT9G139yHFxxHyYFYlVHna9hDHbMo1RkmjOf8PlDNNJatFQQ_-Qe_jmPoSpFBMEq5k-WCKDneUSzHnBJ15SH5l09ZQYp5LMaUU81JKYWc7du0DbN8HzfHF_M1R7Rw-D7D567Dpjym5lTQ3VwvTXJ03i5PrX4byJ7PSms0</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Chen, Daifen</creator><creator>Wang, Hanzhi</creator><creator>Zhang, Shundong</creator><creator>Tade, Moses O.</creator><creator>Shao, Zongping</creator><creator>Chen, Huili</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>201511</creationdate><title>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</title><author>Chen, Daifen ; Wang, Hanzhi ; Zhang, Shundong ; Tade, Moses O. ; Shao, Zongping ; Chen, Huili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Boundaries</topic><topic>COMSOL multiphysics model</topic><topic>Conduction</topic><topic>electrochemical reaction</topic><topic>Electrodes</topic><topic>electronic current leakage</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>mixed ion-electron conductor</topic><topic>Percolation</topic><topic>percolation theory</topic><topic>Simulation</topic><topic>Solid oxide fuel cells</topic><topic>Volt-ampere characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Daifen</creatorcontrib><creatorcontrib>Wang, Hanzhi</creatorcontrib><creatorcontrib>Zhang, Shundong</creatorcontrib><creatorcontrib>Tade, Moses O.</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Chen, Huili</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Daifen</au><au>Wang, Hanzhi</au><au>Zhang, Shundong</au><au>Tade, Moses O.</au><au>Shao, Zongping</au><au>Chen, Huili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2015-11</date><risdate>2015</risdate><volume>61</volume><issue>11</issue><spage>3786</spage><epage>3803</epage><pages>3786-3803</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Solid oxide fuel cells (SOFCs) with electrodes that contain mixed conducting materials usually show very different relationships among microstructure parameters, effective electrode characteristics, and detailed working processes from conventional ones. A new multiscale model for SOFCs using mixed conducting materials, such as LSCF or BSCF, was developed. It consisted of a generalized percolation micromodel to obtain the electrode properties from microstructure parameters and a multiphysics single cell model to relate these properties to performance details. Various constraint relationships between the activation overpotential expressions and electric boundaries for SOFC models were collected by analyzing the local electrochemical equilibrium. Finally, taking a typical LSCF‐SDC/SDC/Ni‐SDC intermediate temperature SOFC as an example, the application of the multiscale model was illustrated. The accuracy of the models was verified by fitting 25 experimental I‐V curves reported in literature with a few adjustable parameters; additionally, and several conclusions were drawn from the analysis of simulation results. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3786–3803, 2015</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.14881</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2015-11, Vol.61 (11), p.3786-3803
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1762109833
source Wiley-Blackwell Read & Publish Collection
subjects Accuracy
Boundaries
COMSOL multiphysics model
Conduction
electrochemical reaction
Electrodes
electronic current leakage
Mathematical models
Microstructure
mixed ion-electron conductor
Percolation
percolation theory
Simulation
Solid oxide fuel cells
Volt-ampere characteristics
title Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20model%20for%20solid%20oxide%20fuel%20cell%20with%20electrode%20containing%20mixed%20conducting%20material&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Daifen&rft.date=2015-11&rft.volume=61&rft.issue=11&rft.spage=3786&rft.epage=3803&rft.pages=3786-3803&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.14881&rft_dat=%3Cproquest_cross%3E1732815264%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5431-39388a4e803edbfed3417618828f046b98523b722c86334d2c51b57766384a673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1725037566&rft_id=info:pmid/&rfr_iscdi=true