Loading…

Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration

When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2009-04, Vol.6 (2), p.287-291
Main Authors: Qiaoliang Li, Qiaoliang Li, Guoyou Wang, Guoyou Wang, Jianguo Liu, Jianguo Liu, Shaobo Chen, Shaobo Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33
cites cdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33
container_end_page 291
container_issue 2
container_start_page 287
container_title IEEE geoscience and remote sensing letters
container_volume 6
creator Qiaoliang Li, Qiaoliang Li
Guoyou Wang, Guoyou Wang
Jianguo Liu, Jianguo Liu
Shaobo Chen, Shaobo Chen
description When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.
doi_str_mv 10.1109/LGRS.2008.2011751
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762117640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4770193</ieee_id><sourcerecordid>875023936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gHhZvOhlayYfm-xRiq2FFqFV8Bay6bRuaXdrkhX892Zp8eDBy8wwPDMvM2-SXAMZAJDiYTqeLwaUEBUDgBRwkvRACJURIeG0q7nIRKHez5ML7zeEUK6U7CWzeVO2PqQLa7aYTeov4ypTh3SEJrQO05kJ9qOq1-mqcekcd03AdIG171qTnVljbK4rH5wJVVNfJmcrs_V4dcz95G309Dp8zqYv48nwcZpZJmTISigK5FYaS2MhOXDOSymWBVUIQFdGqVxRpZaypCTnRBUmL0sBlknDiGWsn9wd9u5d89miD3pXeYvbramxab1WUhDKCpZH8v5fEmRO47-iSERv_6CbpnV1vEOrPL40Ip0yHCDrGu8drvTeVTvjvjUQ3TmhOyd054Q-OhFnbg4zFSL-8lxKAgVjP615goY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861754033</pqid></control><display><type>article</type><title>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</title><source>IEEE Xplore (Online service)</source><creator>Qiaoliang Li, Qiaoliang Li ; Guoyou Wang, Guoyou Wang ; Jianguo Liu, Jianguo Liu ; Shaobo Chen, Shaobo Chen</creator><creatorcontrib>Qiaoliang Li, Qiaoliang Li ; Guoyou Wang, Guoyou Wang ; Jianguo Liu, Jianguo Liu ; Shaobo Chen, Shaobo Chen</creatorcontrib><description>When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2008.2011751</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Constrictions ; Criteria ; Feature extraction ; Feature matching ; Image analysis ; Image fusion ; Image registration ; Image sensors ; Matching ; Mutual information ; Orientation ; Remote sensing ; Robustness ; Satellites ; scale-invariant feature transform (SIFT) ; scale-orientation joint restriction criteria ; Surveillance ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2009-04, Vol.6 (2), p.287-291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</citedby><cites>FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4770193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Qiaoliang Li, Qiaoliang Li</creatorcontrib><creatorcontrib>Guoyou Wang, Guoyou Wang</creatorcontrib><creatorcontrib>Jianguo Liu, Jianguo Liu</creatorcontrib><creatorcontrib>Shaobo Chen, Shaobo Chen</creatorcontrib><title>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.</description><subject>Constrictions</subject><subject>Criteria</subject><subject>Feature extraction</subject><subject>Feature matching</subject><subject>Image analysis</subject><subject>Image fusion</subject><subject>Image registration</subject><subject>Image sensors</subject><subject>Matching</subject><subject>Mutual information</subject><subject>Orientation</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Satellites</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>scale-orientation joint restriction criteria</subject><subject>Surveillance</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFZ_gHhZvOhlayYfm-xRiq2FFqFV8Bay6bRuaXdrkhX892Zp8eDBy8wwPDMvM2-SXAMZAJDiYTqeLwaUEBUDgBRwkvRACJURIeG0q7nIRKHez5ML7zeEUK6U7CWzeVO2PqQLa7aYTeov4ypTh3SEJrQO05kJ9qOq1-mqcekcd03AdIG171qTnVljbK4rH5wJVVNfJmcrs_V4dcz95G309Dp8zqYv48nwcZpZJmTISigK5FYaS2MhOXDOSymWBVUIQFdGqVxRpZaypCTnRBUmL0sBlknDiGWsn9wd9u5d89miD3pXeYvbramxab1WUhDKCpZH8v5fEmRO47-iSERv_6CbpnV1vEOrPL40Ip0yHCDrGu8drvTeVTvjvjUQ3TmhOyd054Q-OhFnbg4zFSL-8lxKAgVjP615goY</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Qiaoliang Li, Qiaoliang Li</creator><creator>Guoyou Wang, Guoyou Wang</creator><creator>Jianguo Liu, Jianguo Liu</creator><creator>Shaobo Chen, Shaobo Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090401</creationdate><title>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</title><author>Qiaoliang Li, Qiaoliang Li ; Guoyou Wang, Guoyou Wang ; Jianguo Liu, Jianguo Liu ; Shaobo Chen, Shaobo Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Constrictions</topic><topic>Criteria</topic><topic>Feature extraction</topic><topic>Feature matching</topic><topic>Image analysis</topic><topic>Image fusion</topic><topic>Image registration</topic><topic>Image sensors</topic><topic>Matching</topic><topic>Mutual information</topic><topic>Orientation</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Satellites</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>scale-orientation joint restriction criteria</topic><topic>Surveillance</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiaoliang Li, Qiaoliang Li</creatorcontrib><creatorcontrib>Guoyou Wang, Guoyou Wang</creatorcontrib><creatorcontrib>Jianguo Liu, Jianguo Liu</creatorcontrib><creatorcontrib>Shaobo Chen, Shaobo Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiaoliang Li, Qiaoliang Li</au><au>Guoyou Wang, Guoyou Wang</au><au>Jianguo Liu, Jianguo Liu</au><au>Shaobo Chen, Shaobo Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>6</volume><issue>2</issue><spage>287</spage><epage>291</epage><pages>287-291</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2008.2011751</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2009-04, Vol.6 (2), p.287-291
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1762117640
source IEEE Xplore (Online service)
subjects Constrictions
Criteria
Feature extraction
Feature matching
Image analysis
Image fusion
Image registration
Image sensors
Matching
Mutual information
Orientation
Remote sensing
Robustness
Satellites
scale-invariant feature transform (SIFT)
scale-orientation joint restriction criteria
Surveillance
Transforms
title Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Scale-Invariant%20Feature%20Matching%20for%20Remote%20Sensing%20Image%20Registration&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qiaoliang%20Li,%20Qiaoliang%20Li&rft.date=2009-04-01&rft.volume=6&rft.issue=2&rft.spage=287&rft.epage=291&rft.pages=287-291&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2008.2011751&rft_dat=%3Cproquest_cross%3E875023936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861754033&rft_id=info:pmid/&rft_ieee_id=4770193&rfr_iscdi=true