Loading…
Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration
When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2009-04, Vol.6 (2), p.287-291 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33 |
container_end_page | 291 |
container_issue | 2 |
container_start_page | 287 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 6 |
creator | Qiaoliang Li, Qiaoliang Li Guoyou Wang, Guoyou Wang Jianguo Liu, Jianguo Liu Shaobo Chen, Shaobo Chen |
description | When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy. |
doi_str_mv | 10.1109/LGRS.2008.2011751 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762117640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4770193</ieee_id><sourcerecordid>875023936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gHhZvOhlayYfm-xRiq2FFqFV8Bay6bRuaXdrkhX892Zp8eDBy8wwPDMvM2-SXAMZAJDiYTqeLwaUEBUDgBRwkvRACJURIeG0q7nIRKHez5ML7zeEUK6U7CWzeVO2PqQLa7aYTeov4ypTh3SEJrQO05kJ9qOq1-mqcekcd03AdIG171qTnVljbK4rH5wJVVNfJmcrs_V4dcz95G309Dp8zqYv48nwcZpZJmTISigK5FYaS2MhOXDOSymWBVUIQFdGqVxRpZaypCTnRBUmL0sBlknDiGWsn9wd9u5d89miD3pXeYvbramxab1WUhDKCpZH8v5fEmRO47-iSERv_6CbpnV1vEOrPL40Ip0yHCDrGu8drvTeVTvjvjUQ3TmhOyd054Q-OhFnbg4zFSL-8lxKAgVjP615goY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861754033</pqid></control><display><type>article</type><title>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</title><source>IEEE Xplore (Online service)</source><creator>Qiaoliang Li, Qiaoliang Li ; Guoyou Wang, Guoyou Wang ; Jianguo Liu, Jianguo Liu ; Shaobo Chen, Shaobo Chen</creator><creatorcontrib>Qiaoliang Li, Qiaoliang Li ; Guoyou Wang, Guoyou Wang ; Jianguo Liu, Jianguo Liu ; Shaobo Chen, Shaobo Chen</creatorcontrib><description>When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2008.2011751</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Constrictions ; Criteria ; Feature extraction ; Feature matching ; Image analysis ; Image fusion ; Image registration ; Image sensors ; Matching ; Mutual information ; Orientation ; Remote sensing ; Robustness ; Satellites ; scale-invariant feature transform (SIFT) ; scale-orientation joint restriction criteria ; Surveillance ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2009-04, Vol.6 (2), p.287-291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</citedby><cites>FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4770193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Qiaoliang Li, Qiaoliang Li</creatorcontrib><creatorcontrib>Guoyou Wang, Guoyou Wang</creatorcontrib><creatorcontrib>Jianguo Liu, Jianguo Liu</creatorcontrib><creatorcontrib>Shaobo Chen, Shaobo Chen</creatorcontrib><title>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.</description><subject>Constrictions</subject><subject>Criteria</subject><subject>Feature extraction</subject><subject>Feature matching</subject><subject>Image analysis</subject><subject>Image fusion</subject><subject>Image registration</subject><subject>Image sensors</subject><subject>Matching</subject><subject>Mutual information</subject><subject>Orientation</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Satellites</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>scale-orientation joint restriction criteria</subject><subject>Surveillance</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFZ_gHhZvOhlayYfm-xRiq2FFqFV8Bay6bRuaXdrkhX892Zp8eDBy8wwPDMvM2-SXAMZAJDiYTqeLwaUEBUDgBRwkvRACJURIeG0q7nIRKHez5ML7zeEUK6U7CWzeVO2PqQLa7aYTeov4ypTh3SEJrQO05kJ9qOq1-mqcekcd03AdIG171qTnVljbK4rH5wJVVNfJmcrs_V4dcz95G309Dp8zqYv48nwcZpZJmTISigK5FYaS2MhOXDOSymWBVUIQFdGqVxRpZaypCTnRBUmL0sBlknDiGWsn9wd9u5d89miD3pXeYvbramxab1WUhDKCpZH8v5fEmRO47-iSERv_6CbpnV1vEOrPL40Ip0yHCDrGu8drvTeVTvjvjUQ3TmhOyd054Q-OhFnbg4zFSL-8lxKAgVjP615goY</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Qiaoliang Li, Qiaoliang Li</creator><creator>Guoyou Wang, Guoyou Wang</creator><creator>Jianguo Liu, Jianguo Liu</creator><creator>Shaobo Chen, Shaobo Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090401</creationdate><title>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</title><author>Qiaoliang Li, Qiaoliang Li ; Guoyou Wang, Guoyou Wang ; Jianguo Liu, Jianguo Liu ; Shaobo Chen, Shaobo Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Constrictions</topic><topic>Criteria</topic><topic>Feature extraction</topic><topic>Feature matching</topic><topic>Image analysis</topic><topic>Image fusion</topic><topic>Image registration</topic><topic>Image sensors</topic><topic>Matching</topic><topic>Mutual information</topic><topic>Orientation</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Satellites</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>scale-orientation joint restriction criteria</topic><topic>Surveillance</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiaoliang Li, Qiaoliang Li</creatorcontrib><creatorcontrib>Guoyou Wang, Guoyou Wang</creatorcontrib><creatorcontrib>Jianguo Liu, Jianguo Liu</creatorcontrib><creatorcontrib>Shaobo Chen, Shaobo Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiaoliang Li, Qiaoliang Li</au><au>Guoyou Wang, Guoyou Wang</au><au>Jianguo Liu, Jianguo Liu</au><au>Shaobo Chen, Shaobo Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>6</volume><issue>2</issue><spage>287</spage><epage>291</epage><pages>287-291</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>When the scale-invariant feature transform (SIFT) is adopted in the registration of remote sensing images, a lot of incorrect matches of keypoints will appear owing to the significant difference in the image intensity between remote sensing images compared to visible images. Scale-orientation joint restriction criteria are proposed to achieve robust feature matching for keypoints in remote sensing images. Moreover, the feature descriptor of each keypoint is also refined to overcome the difference in the gradient intensity and orientation between remote image pairs. Experimental results for multidate, multispectral, and multisensor remote images indicate that the proposed method improves the match performance compared to intensity- and SIFT-based methods in terms of correct-match rate and aligning accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2008.2011751</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2009-04, Vol.6 (2), p.287-291 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762117640 |
source | IEEE Xplore (Online service) |
subjects | Constrictions Criteria Feature extraction Feature matching Image analysis Image fusion Image registration Image sensors Matching Mutual information Orientation Remote sensing Robustness Satellites scale-invariant feature transform (SIFT) scale-orientation joint restriction criteria Surveillance Transforms |
title | Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Scale-Invariant%20Feature%20Matching%20for%20Remote%20Sensing%20Image%20Registration&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qiaoliang%20Li,%20Qiaoliang%20Li&rft.date=2009-04-01&rft.volume=6&rft.issue=2&rft.spage=287&rft.epage=291&rft.pages=287-291&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2008.2011751&rft_dat=%3Cproquest_cross%3E875023936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-b199e4c7ac299e741444b75d928e112fa8868288d7b2064089a6bb51c37a30c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861754033&rft_id=info:pmid/&rft_ieee_id=4770193&rfr_iscdi=true |