Loading…

Carburisation layer evolution of Fe-Cr-Ni alloy in furnace after long term service: experimental study and numerical prediction

Owing to high temperature comprehensive properties, Fe-Cr-Ni alloys are designed to operate in corrosive gaseous environments of ethylene pyrolysis furnace. However, most premature failed tubes were caused by carburisation. In the present study, based on the Fick's second law and equilibrium co...

Full description

Saved in:
Bibliographic Details
Published in:Materials at high temperatures 2014-05, Vol.31 (2), p.148-154
Main Authors: Shen, L. M., Gong, J. M., Liu, H. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Owing to high temperature comprehensive properties, Fe-Cr-Ni alloys are designed to operate in corrosive gaseous environments of ethylene pyrolysis furnace. However, most premature failed tubes were caused by carburisation. In the present study, based on the Fick's second law and equilibrium constant method, study on the carburised layer evolution of HP40Nb and KHR45A alloys by pack carburising experimental investigation and numerical simulation by MATLAB software were carried out. The results show that the experimental and simulated data agree with each other acceptably. The carburising layer rate of KHR45A alloy is much smaller than that of HP40Nb alloy due to higher contents of Cr and Ni element in the former. With increasing operating temperature ranging from 1000 to 1100°C, the maximum service lives of the two alloys sharply decrease.
ISSN:0960-3409
1878-6413
DOI:10.1179/1878641313Y.0000000002