Loading…

A numerical optimization on the vibroacoustics of a centrifugal fan volute

A numerical optimization is presented to reduce the vibration and noise of a centrifugal fan volute. Minimal vibration was considered as the aim of the optimization, and the calculation of sound field induced by the vibration of the volute was only based on the final results of the optimization. Aft...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2012-05, Vol.331 (10), p.2365-2385
Main Authors: Lu, F.A., Qi, D.T., Wang, X.J., Zhou, Z., Zhou, H.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A numerical optimization is presented to reduce the vibration and noise of a centrifugal fan volute. Minimal vibration was considered as the aim of the optimization, and the calculation of sound field induced by the vibration of the volute was only based on the final results of the optimization. After the three-dimensional unsteady flow simulation of a centrifugal fan, the parametric finite element model of the volute was created using the pressure fluctuations at blade passing frequency on the volute as external excitation forces. To validate the finite element model of the volute, natural frequencies and amplitudes of the normal velocities of the volute at blade passing frequency were measured. A good agreement was found between the numerical and the experimental results. Then, random method and first-order optimization method were applied in the optimization process. The numerical optimization of the volute was carried out using the local thickness of the volute as design variables and the quadratic sum of the nodal velocities as an objective function. Numerical optimization results show that the volute vibration is reduced by the optimization method. Finally, vibroacoustics of the volute before and after the optimization were calculated by direct boundary element method. The results show that the radiated power of the vibroacoustics of the volute is reduced significantly as well as the vibration of the volute after the optimization.This numerical optimization process provides a useful reference for vibroacoustic reduction of centrifugal compressors and centrifugal fans whose fluids should be kept strictly in a system without leakage.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2011.12.035