Loading…
Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is...
Saved in:
Published in: | Natural hazards (Dordrecht) 2013-03, Vol.66 (2), p.759-771 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403 |
---|---|
cites | cdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403 |
container_end_page | 771 |
container_issue | 2 |
container_start_page | 759 |
container_title | Natural hazards (Dordrecht) |
container_volume | 66 |
creator | Lian, Cheng Zeng, Zhigang Yao, Wei Tang, Huiming |
description | In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements. |
doi_str_mv | 10.1007/s11069-012-0517-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762132727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762132727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</originalsourceid><addsrcrecordid>eNqNkU-L1TAUxYM44PONH8BdQAQ31dwkTZqljH9hwM0MuAu36e2YoU1r0ge69JubN28QEURXITnn_nIuh7GnIF6CEPZVARDGNQJkI1qwjXnAdtBa1YhOi4dsJ5yERijx-RF7XMqtEABGuh378SaWdcJAM6WNr5mGGLa4JD4vA018GfmEaShTHIj3WGjgVcOjGsdYb5QKzf1EnOY15hhwupvkA4VlXpcS72AVwenblusvfCLMKaYbPmP4EhOds7MRp0JP7s89u3739uriQ3P56f3Hi9eXDWrTbY3DHo2RShnUqLVA5UbQARwNrZX1UZueqkKhQ9ejsHKwI4yI2EkntFB79uLEXfPy9UBl83Msgaa6Hy2H4sEaCUpaaf9t1WBbLVX3H1QllZTQ1uB79uwP6-1yyKnuXIHVY2ynTXXByRXyUkqm0a85zpi_exD-WLU_Ve1r1f5YtT_OPL8nY6kNjBlTiOXXoLRtZ13Nu2fy5CtVSjeUf0vwV_hPY-i5Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1422167846</pqid></control><display><type>article</type><title>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</title><source>PAIS Index</source><source>Springer Link</source><creator>Lian, Cheng ; Zeng, Zhigang ; Yao, Wei ; Tang, Huiming</creator><creatorcontrib>Lian, Cheng ; Zeng, Zhigang ; Yao, Wei ; Tang, Huiming</creatorcontrib><description>In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-012-0517-6</identifier><identifier>CODEN: NAHZEL</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Canyons ; China (People's Republic) ; Civil Engineering ; Data structures ; Decomposition ; Deformation ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Elm ; Empirical analysis ; Engineering and environment geology. Geothermics ; Ensemble forecasting ; Environmental Management ; Exact sciences and technology ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; High frequency ; Hydrogeology ; Landslides ; Learning ; Learning algorithms ; Machine learning ; Mathematical models ; Measurement ; Natural Hazards ; Natural hazards: prediction, damages, etc ; Neural networks ; Nonlinear systems ; Original Paper ; Prediction models ; Reservoirs ; Time series</subject><ispartof>Natural hazards (Dordrecht), 2013-03, Vol.66 (2), p.759-771</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media Dordrecht 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</citedby><cites>FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27846,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27587942$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Tang, Huiming</creatorcontrib><title>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.</description><subject>Artificial neural networks</subject><subject>Canyons</subject><subject>China (People's Republic)</subject><subject>Civil Engineering</subject><subject>Data structures</subject><subject>Decomposition</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Elm</subject><subject>Empirical analysis</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Ensemble forecasting</subject><subject>Environmental Management</subject><subject>Exact sciences and technology</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>High frequency</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Learning</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Natural Hazards</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Original Paper</subject><subject>Prediction models</subject><subject>Reservoirs</subject><subject>Time series</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkU-L1TAUxYM44PONH8BdQAQ31dwkTZqljH9hwM0MuAu36e2YoU1r0ge69JubN28QEURXITnn_nIuh7GnIF6CEPZVARDGNQJkI1qwjXnAdtBa1YhOi4dsJ5yERijx-RF7XMqtEABGuh378SaWdcJAM6WNr5mGGLa4JD4vA018GfmEaShTHIj3WGjgVcOjGsdYb5QKzf1EnOY15hhwupvkA4VlXpcS72AVwenblusvfCLMKaYbPmP4EhOds7MRp0JP7s89u3739uriQ3P56f3Hi9eXDWrTbY3DHo2RShnUqLVA5UbQARwNrZX1UZueqkKhQ9ejsHKwI4yI2EkntFB79uLEXfPy9UBl83Msgaa6Hy2H4sEaCUpaaf9t1WBbLVX3H1QllZTQ1uB79uwP6-1yyKnuXIHVY2ynTXXByRXyUkqm0a85zpi_exD-WLU_Ve1r1f5YtT_OPL8nY6kNjBlTiOXXoLRtZ13Nu2fy5CtVSjeUf0vwV_hPY-i5Fg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Lian, Cheng</creator><creator>Zeng, Zhigang</creator><creator>Yao, Wei</creator><creator>Tang, Huiming</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>20130301</creationdate><title>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</title><author>Lian, Cheng ; Zeng, Zhigang ; Yao, Wei ; Tang, Huiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Canyons</topic><topic>China (People's Republic)</topic><topic>Civil Engineering</topic><topic>Data structures</topic><topic>Decomposition</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Elm</topic><topic>Empirical analysis</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Ensemble forecasting</topic><topic>Environmental Management</topic><topic>Exact sciences and technology</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>High frequency</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Learning</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Natural Hazards</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Original Paper</topic><topic>Prediction models</topic><topic>Reservoirs</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Tang, Huiming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Cheng</au><au>Zeng, Zhigang</au><au>Yao, Wei</au><au>Tang, Huiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>66</volume><issue>2</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><coden>NAHZEL</coden><abstract>In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-012-0517-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2013-03, Vol.66 (2), p.759-771 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762132727 |
source | PAIS Index; Springer Link |
subjects | Artificial neural networks Canyons China (People's Republic) Civil Engineering Data structures Decomposition Deformation Displacement Earth and Environmental Science Earth Sciences Earth, ocean, space Elm Empirical analysis Engineering and environment geology. Geothermics Ensemble forecasting Environmental Management Exact sciences and technology Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences High frequency Hydrogeology Landslides Learning Learning algorithms Machine learning Mathematical models Measurement Natural Hazards Natural hazards: prediction, damages, etc Neural networks Nonlinear systems Original Paper Prediction models Reservoirs Time series |
title | Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacement%20prediction%20model%20of%20landslide%20based%20on%20a%20modified%20ensemble%20empirical%20mode%20decomposition%20and%20extreme%20learning%20machine&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Lian,%20Cheng&rft.date=2013-03-01&rft.volume=66&rft.issue=2&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=0921-030X&rft.eissn=1573-0840&rft.coden=NAHZEL&rft_id=info:doi/10.1007/s11069-012-0517-6&rft_dat=%3Cproquest_cross%3E1762132727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1422167846&rft_id=info:pmid/&rfr_iscdi=true |