Loading…

Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine

In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is...

Full description

Saved in:
Bibliographic Details
Published in:Natural hazards (Dordrecht) 2013-03, Vol.66 (2), p.759-771
Main Authors: Lian, Cheng, Zeng, Zhigang, Yao, Wei, Tang, Huiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403
cites cdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403
container_end_page 771
container_issue 2
container_start_page 759
container_title Natural hazards (Dordrecht)
container_volume 66
creator Lian, Cheng
Zeng, Zhigang
Yao, Wei
Tang, Huiming
description In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.
doi_str_mv 10.1007/s11069-012-0517-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762132727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762132727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</originalsourceid><addsrcrecordid>eNqNkU-L1TAUxYM44PONH8BdQAQ31dwkTZqljH9hwM0MuAu36e2YoU1r0ge69JubN28QEURXITnn_nIuh7GnIF6CEPZVARDGNQJkI1qwjXnAdtBa1YhOi4dsJ5yERijx-RF7XMqtEABGuh378SaWdcJAM6WNr5mGGLa4JD4vA018GfmEaShTHIj3WGjgVcOjGsdYb5QKzf1EnOY15hhwupvkA4VlXpcS72AVwenblusvfCLMKaYbPmP4EhOds7MRp0JP7s89u3739uriQ3P56f3Hi9eXDWrTbY3DHo2RShnUqLVA5UbQARwNrZX1UZueqkKhQ9ejsHKwI4yI2EkntFB79uLEXfPy9UBl83Msgaa6Hy2H4sEaCUpaaf9t1WBbLVX3H1QllZTQ1uB79uwP6-1yyKnuXIHVY2ynTXXByRXyUkqm0a85zpi_exD-WLU_Ve1r1f5YtT_OPL8nY6kNjBlTiOXXoLRtZ13Nu2fy5CtVSjeUf0vwV_hPY-i5Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1422167846</pqid></control><display><type>article</type><title>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</title><source>PAIS Index</source><source>Springer Link</source><creator>Lian, Cheng ; Zeng, Zhigang ; Yao, Wei ; Tang, Huiming</creator><creatorcontrib>Lian, Cheng ; Zeng, Zhigang ; Yao, Wei ; Tang, Huiming</creatorcontrib><description>In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-012-0517-6</identifier><identifier>CODEN: NAHZEL</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Canyons ; China (People's Republic) ; Civil Engineering ; Data structures ; Decomposition ; Deformation ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Elm ; Empirical analysis ; Engineering and environment geology. Geothermics ; Ensemble forecasting ; Environmental Management ; Exact sciences and technology ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; High frequency ; Hydrogeology ; Landslides ; Learning ; Learning algorithms ; Machine learning ; Mathematical models ; Measurement ; Natural Hazards ; Natural hazards: prediction, damages, etc ; Neural networks ; Nonlinear systems ; Original Paper ; Prediction models ; Reservoirs ; Time series</subject><ispartof>Natural hazards (Dordrecht), 2013-03, Vol.66 (2), p.759-771</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media Dordrecht 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</citedby><cites>FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27846,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27587942$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Tang, Huiming</creatorcontrib><title>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.</description><subject>Artificial neural networks</subject><subject>Canyons</subject><subject>China (People's Republic)</subject><subject>Civil Engineering</subject><subject>Data structures</subject><subject>Decomposition</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Elm</subject><subject>Empirical analysis</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Ensemble forecasting</subject><subject>Environmental Management</subject><subject>Exact sciences and technology</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>High frequency</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Learning</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Natural Hazards</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Original Paper</subject><subject>Prediction models</subject><subject>Reservoirs</subject><subject>Time series</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkU-L1TAUxYM44PONH8BdQAQ31dwkTZqljH9hwM0MuAu36e2YoU1r0ge69JubN28QEURXITnn_nIuh7GnIF6CEPZVARDGNQJkI1qwjXnAdtBa1YhOi4dsJ5yERijx-RF7XMqtEABGuh378SaWdcJAM6WNr5mGGLa4JD4vA018GfmEaShTHIj3WGjgVcOjGsdYb5QKzf1EnOY15hhwupvkA4VlXpcS72AVwenblusvfCLMKaYbPmP4EhOds7MRp0JP7s89u3739uriQ3P56f3Hi9eXDWrTbY3DHo2RShnUqLVA5UbQARwNrZX1UZueqkKhQ9ejsHKwI4yI2EkntFB79uLEXfPy9UBl83Msgaa6Hy2H4sEaCUpaaf9t1WBbLVX3H1QllZTQ1uB79uwP6-1yyKnuXIHVY2ynTXXByRXyUkqm0a85zpi_exD-WLU_Ve1r1f5YtT_OPL8nY6kNjBlTiOXXoLRtZ13Nu2fy5CtVSjeUf0vwV_hPY-i5Fg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Lian, Cheng</creator><creator>Zeng, Zhigang</creator><creator>Yao, Wei</creator><creator>Tang, Huiming</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>20130301</creationdate><title>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</title><author>Lian, Cheng ; Zeng, Zhigang ; Yao, Wei ; Tang, Huiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Canyons</topic><topic>China (People's Republic)</topic><topic>Civil Engineering</topic><topic>Data structures</topic><topic>Decomposition</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Elm</topic><topic>Empirical analysis</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Ensemble forecasting</topic><topic>Environmental Management</topic><topic>Exact sciences and technology</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>High frequency</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Learning</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Natural Hazards</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Original Paper</topic><topic>Prediction models</topic><topic>Reservoirs</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Cheng</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Yao, Wei</creatorcontrib><creatorcontrib>Tang, Huiming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Cheng</au><au>Zeng, Zhigang</au><au>Yao, Wei</au><au>Tang, Huiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>66</volume><issue>2</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><coden>NAHZEL</coden><abstract>In this paper, an M–EEMD–ELM model (modified ensemble empirical mode decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning paradigm) is proposed for landslide displacement prediction. The nonlinear original surface displacement deformation monitoring time series of landslide is first decomposed into a limited number of intrinsic mode functions (IMFs) and one residual series using EEMD technique for a deep insight into the data structure. Then, these sub-series except the high frequency are forecasted, respectively, by establishing appropriate ELM models. At last, the prediction results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original landslide displacement series. A case study of Baishuihe landslide in the Three Gorges reservoir area of China is presented to illustrate the capability and merit of our model. Empirical results reveal that the prediction using M–EEMD–ELM model is consistently better than basic artificial neural networks (ANNs) and unmodified EEMD–ELM in terms of the same measurements.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-012-0517-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2013-03, Vol.66 (2), p.759-771
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_miscellaneous_1762132727
source PAIS Index; Springer Link
subjects Artificial neural networks
Canyons
China (People's Republic)
Civil Engineering
Data structures
Decomposition
Deformation
Displacement
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Elm
Empirical analysis
Engineering and environment geology. Geothermics
Ensemble forecasting
Environmental Management
Exact sciences and technology
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
High frequency
Hydrogeology
Landslides
Learning
Learning algorithms
Machine learning
Mathematical models
Measurement
Natural Hazards
Natural hazards: prediction, damages, etc
Neural networks
Nonlinear systems
Original Paper
Prediction models
Reservoirs
Time series
title Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacement%20prediction%20model%20of%20landslide%20based%20on%20a%20modified%20ensemble%20empirical%20mode%20decomposition%20and%20extreme%20learning%20machine&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Lian,%20Cheng&rft.date=2013-03-01&rft.volume=66&rft.issue=2&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=0921-030X&rft.eissn=1573-0840&rft.coden=NAHZEL&rft_id=info:doi/10.1007/s11069-012-0517-6&rft_dat=%3Cproquest_cross%3E1762132727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a468t-9aba662336a4a440a39f14c19ed5726a446be4a4ec8a9ba072d7f1faaa8290403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1422167846&rft_id=info:pmid/&rfr_iscdi=true