Loading…

Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles

A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2013-05, Vol.56, p.288-295
Main Authors: Yang, Q., Sui, G., Shi, Y.Z., Duan, S., Bao, J.Q., Cai, Q., Yang, X.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13
cites cdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13
container_end_page 295
container_issue
container_start_page 288
container_title Carbon (New York)
container_volume 56
creator Yang, Q.
Sui, G.
Shi, Y.Z.
Duan, S.
Bao, J.Q.
Cai, Q.
Yang, X.P.
description A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.
doi_str_mv 10.1016/j.carbon.2013.01.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762134126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622313000353</els_id><sourcerecordid>1762134126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOK5-Aw99Ebz0bP51OnMRZHF1YWEveg6VTLLWkEnaJLswfnoz9uJRhQdFPX5VD6oIecvollGmLg9bB8XmtOWUiS1lXfIZ2TA9i1HoHXtONpRSPSrOxUvyqtZDb6VmckPqXW0-u3xcoKHFiO00uO9QwDVf8Gc3cxpyGJYcT-DKKeaErWD0wxo5JEg5oPWlDi6nBpgw3Q8Wc9-Aj364j1Drb2qB0tBFX1-TFwFi9W-e6gX5dv3p69WX8fbu883Vx9vRSTG1EYSCaRZBO2uVpdQ6IaeZi9nDLnC75_sAZ1mgM9dMdVdOLghNldTCM3FB3q97l5J_PPjazBGr8zFC8vmhGjYrzoRkXP0bnTootJr_AxVc8GmnFO2oXFFXcq3FB7MUPEI5GUbN-XPmYNYzmvPnDGVdso-9e0qA6iCGAslh_TPLZyYpZ1PnPqyc70d8RF9MdeiT83ss3jWzz_j3oF-sWLPa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323259660</pqid></control><display><type>article</type><title>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</title><source>ScienceDirect Freedom Collection</source><creator>Yang, Q. ; Sui, G. ; Shi, Y.Z. ; Duan, S. ; Bao, J.Q. ; Cai, Q. ; Yang, X.P.</creator><creatorcontrib>Yang, Q. ; Sui, G. ; Shi, Y.Z. ; Duan, S. ; Bao, J.Q. ; Cai, Q. ; Yang, X.P.</creatorcontrib><description>A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2013.01.014</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biomedical materials ; Carbon fibers ; Chemistry ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Cross-disciplinary physics: materials science; rheology ; Electrospinning ; Exact sciences and technology ; General and physical chemistry ; Glass ; In vitro testing ; Materials science ; Nanocrystalline materials ; Nanofibers ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Precursors ; Sol gel process</subject><ispartof>Carbon (New York), 2013-05, Vol.56, p.288-295</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</citedby><cites>FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27140215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Sui, G.</creatorcontrib><creatorcontrib>Shi, Y.Z.</creatorcontrib><creatorcontrib>Duan, S.</creatorcontrib><creatorcontrib>Bao, J.Q.</creatorcontrib><creatorcontrib>Cai, Q.</creatorcontrib><creatorcontrib>Yang, X.P.</creatorcontrib><title>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</title><title>Carbon (New York)</title><description>A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.</description><subject>Biomedical materials</subject><subject>Carbon fibers</subject><subject>Chemistry</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>In vitro testing</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Precursors</subject><subject>Sol gel process</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOK5-Aw99Ebz0bP51OnMRZHF1YWEveg6VTLLWkEnaJLswfnoz9uJRhQdFPX5VD6oIecvollGmLg9bB8XmtOWUiS1lXfIZ2TA9i1HoHXtONpRSPSrOxUvyqtZDb6VmckPqXW0-u3xcoKHFiO00uO9QwDVf8Gc3cxpyGJYcT-DKKeaErWD0wxo5JEg5oPWlDi6nBpgw3Q8Wc9-Aj364j1Drb2qB0tBFX1-TFwFi9W-e6gX5dv3p69WX8fbu883Vx9vRSTG1EYSCaRZBO2uVpdQ6IaeZi9nDLnC75_sAZ1mgM9dMdVdOLghNldTCM3FB3q97l5J_PPjazBGr8zFC8vmhGjYrzoRkXP0bnTootJr_AxVc8GmnFO2oXFFXcq3FB7MUPEI5GUbN-XPmYNYzmvPnDGVdso-9e0qA6iCGAslh_TPLZyYpZ1PnPqyc70d8RF9MdeiT83ss3jWzz_j3oF-sWLPa</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Yang, Q.</creator><creator>Sui, G.</creator><creator>Shi, Y.Z.</creator><creator>Duan, S.</creator><creator>Bao, J.Q.</creator><creator>Cai, Q.</creator><creator>Yang, X.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</title><author>Yang, Q. ; Sui, G. ; Shi, Y.Z. ; Duan, S. ; Bao, J.Q. ; Cai, Q. ; Yang, X.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomedical materials</topic><topic>Carbon fibers</topic><topic>Chemistry</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>In vitro testing</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Precursors</topic><topic>Sol gel process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Sui, G.</creatorcontrib><creatorcontrib>Shi, Y.Z.</creatorcontrib><creatorcontrib>Duan, S.</creatorcontrib><creatorcontrib>Bao, J.Q.</creatorcontrib><creatorcontrib>Cai, Q.</creatorcontrib><creatorcontrib>Yang, X.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Q.</au><au>Sui, G.</au><au>Shi, Y.Z.</au><au>Duan, S.</au><au>Bao, J.Q.</au><au>Cai, Q.</au><au>Yang, X.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</atitle><jtitle>Carbon (New York)</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>56</volume><spage>288</spage><epage>295</epage><pages>288-295</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2013.01.014</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2013-05, Vol.56, p.288-295
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1762134126
source ScienceDirect Freedom Collection
subjects Biomedical materials
Carbon fibers
Chemistry
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Cross-disciplinary physics: materials science
rheology
Electrospinning
Exact sciences and technology
General and physical chemistry
Glass
In vitro testing
Materials science
Nanocrystalline materials
Nanofibers
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Precursors
Sol gel process
title Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteocompatibility%20characterization%20of%20polyacrylonitrile%20carbon%20nanofibers%20containing%20bioactive%20glass%20nanoparticles&rft.jtitle=Carbon%20(New%20York)&rft.au=Yang,%20Q.&rft.date=2013-05-01&rft.volume=56&rft.spage=288&rft.epage=295&rft.pages=288-295&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2013.01.014&rft_dat=%3Cproquest_cross%3E1762134126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323259660&rft_id=info:pmid/&rfr_iscdi=true