Loading…
Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles
A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as...
Saved in:
Published in: | Carbon (New York) 2013-05, Vol.56, p.288-295 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13 |
container_end_page | 295 |
container_issue | |
container_start_page | 288 |
container_title | Carbon (New York) |
container_volume | 56 |
creator | Yang, Q. Sui, G. Shi, Y.Z. Duan, S. Bao, J.Q. Cai, Q. Yang, X.P. |
description | A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles. |
doi_str_mv | 10.1016/j.carbon.2013.01.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762134126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622313000353</els_id><sourcerecordid>1762134126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOK5-Aw99Ebz0bP51OnMRZHF1YWEveg6VTLLWkEnaJLswfnoz9uJRhQdFPX5VD6oIecvollGmLg9bB8XmtOWUiS1lXfIZ2TA9i1HoHXtONpRSPSrOxUvyqtZDb6VmckPqXW0-u3xcoKHFiO00uO9QwDVf8Gc3cxpyGJYcT-DKKeaErWD0wxo5JEg5oPWlDi6nBpgw3Q8Wc9-Aj364j1Drb2qB0tBFX1-TFwFi9W-e6gX5dv3p69WX8fbu883Vx9vRSTG1EYSCaRZBO2uVpdQ6IaeZi9nDLnC75_sAZ1mgM9dMdVdOLghNldTCM3FB3q97l5J_PPjazBGr8zFC8vmhGjYrzoRkXP0bnTootJr_AxVc8GmnFO2oXFFXcq3FB7MUPEI5GUbN-XPmYNYzmvPnDGVdso-9e0qA6iCGAslh_TPLZyYpZ1PnPqyc70d8RF9MdeiT83ss3jWzz_j3oF-sWLPa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323259660</pqid></control><display><type>article</type><title>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</title><source>ScienceDirect Freedom Collection</source><creator>Yang, Q. ; Sui, G. ; Shi, Y.Z. ; Duan, S. ; Bao, J.Q. ; Cai, Q. ; Yang, X.P.</creator><creatorcontrib>Yang, Q. ; Sui, G. ; Shi, Y.Z. ; Duan, S. ; Bao, J.Q. ; Cai, Q. ; Yang, X.P.</creatorcontrib><description>A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2013.01.014</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biomedical materials ; Carbon fibers ; Chemistry ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Cross-disciplinary physics: materials science; rheology ; Electrospinning ; Exact sciences and technology ; General and physical chemistry ; Glass ; In vitro testing ; Materials science ; Nanocrystalline materials ; Nanofibers ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Precursors ; Sol gel process</subject><ispartof>Carbon (New York), 2013-05, Vol.56, p.288-295</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</citedby><cites>FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27140215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Sui, G.</creatorcontrib><creatorcontrib>Shi, Y.Z.</creatorcontrib><creatorcontrib>Duan, S.</creatorcontrib><creatorcontrib>Bao, J.Q.</creatorcontrib><creatorcontrib>Cai, Q.</creatorcontrib><creatorcontrib>Yang, X.P.</creatorcontrib><title>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</title><title>Carbon (New York)</title><description>A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.</description><subject>Biomedical materials</subject><subject>Carbon fibers</subject><subject>Chemistry</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>In vitro testing</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Precursors</subject><subject>Sol gel process</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOK5-Aw99Ebz0bP51OnMRZHF1YWEveg6VTLLWkEnaJLswfnoz9uJRhQdFPX5VD6oIecvollGmLg9bB8XmtOWUiS1lXfIZ2TA9i1HoHXtONpRSPSrOxUvyqtZDb6VmckPqXW0-u3xcoKHFiO00uO9QwDVf8Gc3cxpyGJYcT-DKKeaErWD0wxo5JEg5oPWlDi6nBpgw3Q8Wc9-Aj364j1Drb2qB0tBFX1-TFwFi9W-e6gX5dv3p69WX8fbu883Vx9vRSTG1EYSCaRZBO2uVpdQ6IaeZi9nDLnC75_sAZ1mgM9dMdVdOLghNldTCM3FB3q97l5J_PPjazBGr8zFC8vmhGjYrzoRkXP0bnTootJr_AxVc8GmnFO2oXFFXcq3FB7MUPEI5GUbN-XPmYNYzmvPnDGVdso-9e0qA6iCGAslh_TPLZyYpZ1PnPqyc70d8RF9MdeiT83ss3jWzz_j3oF-sWLPa</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Yang, Q.</creator><creator>Sui, G.</creator><creator>Shi, Y.Z.</creator><creator>Duan, S.</creator><creator>Bao, J.Q.</creator><creator>Cai, Q.</creator><creator>Yang, X.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</title><author>Yang, Q. ; Sui, G. ; Shi, Y.Z. ; Duan, S. ; Bao, J.Q. ; Cai, Q. ; Yang, X.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomedical materials</topic><topic>Carbon fibers</topic><topic>Chemistry</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>In vitro testing</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Precursors</topic><topic>Sol gel process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Sui, G.</creatorcontrib><creatorcontrib>Shi, Y.Z.</creatorcontrib><creatorcontrib>Duan, S.</creatorcontrib><creatorcontrib>Bao, J.Q.</creatorcontrib><creatorcontrib>Cai, Q.</creatorcontrib><creatorcontrib>Yang, X.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Q.</au><au>Sui, G.</au><au>Shi, Y.Z.</au><au>Duan, S.</au><au>Bao, J.Q.</au><au>Cai, Q.</au><au>Yang, X.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles</atitle><jtitle>Carbon (New York)</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>56</volume><spage>288</spage><epage>295</epage><pages>288-295</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>A kind of composite carbon nanofibers (CNF) containing bioactive glass (BG) nanoparticles was produced for bone regeneration by a combination of electrospinning and sol–gel techniques. To produce the BG, compounds such as calcium nitrate, triethyl phosphate and tetraethyl orthosilicate were used as precursors and hydrolyzed to form a sol–gel solution, which was then added to a polyacrylonitrile (PAN) solution in N,N-dimethylformamide. The resulting mixture was electrospun to form PAN nanofibers containing the BG precursors. Upon oxidation and carbonization, the PAN nanofibers and BG precursors transformed into continuous CNF embedded with BG nanoparticles (CNF/BG). Through this fabrication technique, several CNF/BG composites were obtained by controlling the feeding ratios of the different precursors giving rise to BG nanoparticles with various compositions (i.e. containing 70–90mol% of SiO2 component). In vitro biomineralization in a simulated body fluid and co-culture with MC3T3-E1 osteoblasts studies were performed to evaluate the osteocompatibility of the CNF/BG nanoparticle composites. When compared to pure CNF, the CNF/BG composites showed an improved ability to promote the in vitro formation of apatite and MC3T3-E1 proliferation, which was found to be dependent upon the composition of BG nanoparticles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2013.01.014</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2013-05, Vol.56, p.288-295 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762134126 |
source | ScienceDirect Freedom Collection |
subjects | Biomedical materials Carbon fibers Chemistry Colloidal gels. Colloidal sols Colloidal state and disperse state Cross-disciplinary physics: materials science rheology Electrospinning Exact sciences and technology General and physical chemistry Glass In vitro testing Materials science Nanocrystalline materials Nanofibers Nanoparticles Nanoscale materials and structures: fabrication and characterization Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Precursors Sol gel process |
title | Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteocompatibility%20characterization%20of%20polyacrylonitrile%20carbon%20nanofibers%20containing%20bioactive%20glass%20nanoparticles&rft.jtitle=Carbon%20(New%20York)&rft.au=Yang,%20Q.&rft.date=2013-05-01&rft.volume=56&rft.spage=288&rft.epage=295&rft.pages=288-295&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2013.01.014&rft_dat=%3Cproquest_cross%3E1762134126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-a36a573f8cbb6b00bc3457237ea9f2bd2dfadfadba072816a9f45cf3806483e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323259660&rft_id=info:pmid/&rfr_iscdi=true |