Loading…

Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption

The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zir...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2013-08, Vol.41 (8), p.867-870
Main Authors: Wotzlaw, Jörn-Frederik, Schaltegger, Urs, Frick, Daniel A, Dungan, Michael A, Gerdes, Axel, Günther, Detlef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93
cites cdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93
container_end_page 870
container_issue 8
container_start_page 867
container_title Geology (Boulder)
container_volume 41
creator Wotzlaw, Jörn-Frederik
Schaltegger, Urs
Frick, Daniel A
Dungan, Michael A
Gerdes, Axel
Günther, Detlef
description The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.
doi_str_mv 10.1130/G34366.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762134482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439784980</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH6APyHgRZCumSRt0qMsugoLXvRqyaaTNdo2a9Ku-O_tsqLgRRgYmPfhgeEl5AzYFECwq7mQoiimsEcmUEqR8ULzfTJhrIRMFSAOyVFKr4yBzJWekOfHaOyb71a0f0GKm9AMvQ8dDY42Jq4w215apMk33npLW7NqDY2YMG6Cj4m6GFpqUsJ22XzSPtA0rDFiHNZbzwk5cKZJePq9j8nT7c3j7C5bPMzvZ9eLzEid95mWvHa5E8hlKZnRirs6L2BZ1IUsa2Mdd6AcSl06ZELjGOZLBajzeonCluKYXOy86xjeB0x91fpksWlMh2FIFaiCg5BS8_9RKUqlZanZiJ7_QV_DELvxkZECIZjazo_QxpBSRFeto29N_KyAVdtOql0nFYzo5Q5dYUjWY2fxI8Sm_vVyBqJiucolE18EaY1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1413307307</pqid></control><display><type>article</type><title>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</title><source>GeoScienceWorld</source><creator>Wotzlaw, Jörn-Frederik ; Schaltegger, Urs ; Frick, Daniel A ; Dungan, Michael A ; Gerdes, Axel ; Günther, Detlef</creator><creatorcontrib>Wotzlaw, Jörn-Frederik ; Schaltegger, Urs ; Frick, Daniel A ; Dungan, Michael A ; Gerdes, Axel ; Günther, Detlef</creatorcontrib><description>The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G34366.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>absolute age ; alkali feldspar ; Ar/Ar ; Canyons ; Carbon dating ; Cenozoic ; Chemical elements ; Colorado ; dates ; eruptions ; feldspar group ; Fish ; Fish Canyon Tuff ; framework silicates ; geochemistry ; Geochronology ; Geology ; igneous and metamorphic rocks ; igneous rocks ; Magma ; magma chambers ; magmas ; magmatism ; Mathematical models ; melts ; nesosilicates ; Oligocene ; orthosilicates ; Paleogene ; Petrology ; pyroclastics ; Reservoirs ; San Juan volcanic field ; sanidine ; silicate melts ; silicates ; Tertiary ; Thermal evolution ; Trace elements ; tuff ; U/Pb ; United States ; volcanic rocks ; Zircon ; zircon group</subject><ispartof>Geology (Boulder), 2013-08, Vol.41 (8), p.867-870</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</citedby><cites>FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G34366.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Schaltegger, Urs</creatorcontrib><creatorcontrib>Frick, Daniel A</creatorcontrib><creatorcontrib>Dungan, Michael A</creatorcontrib><creatorcontrib>Gerdes, Axel</creatorcontrib><creatorcontrib>Günther, Detlef</creatorcontrib><title>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</title><title>Geology (Boulder)</title><description>The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.</description><subject>absolute age</subject><subject>alkali feldspar</subject><subject>Ar/Ar</subject><subject>Canyons</subject><subject>Carbon dating</subject><subject>Cenozoic</subject><subject>Chemical elements</subject><subject>Colorado</subject><subject>dates</subject><subject>eruptions</subject><subject>feldspar group</subject><subject>Fish</subject><subject>Fish Canyon Tuff</subject><subject>framework silicates</subject><subject>geochemistry</subject><subject>Geochronology</subject><subject>Geology</subject><subject>igneous and metamorphic rocks</subject><subject>igneous rocks</subject><subject>Magma</subject><subject>magma chambers</subject><subject>magmas</subject><subject>magmatism</subject><subject>Mathematical models</subject><subject>melts</subject><subject>nesosilicates</subject><subject>Oligocene</subject><subject>orthosilicates</subject><subject>Paleogene</subject><subject>Petrology</subject><subject>pyroclastics</subject><subject>Reservoirs</subject><subject>San Juan volcanic field</subject><subject>sanidine</subject><subject>silicate melts</subject><subject>silicates</subject><subject>Tertiary</subject><subject>Thermal evolution</subject><subject>Trace elements</subject><subject>tuff</subject><subject>U/Pb</subject><subject>United States</subject><subject>volcanic rocks</subject><subject>Zircon</subject><subject>zircon group</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouH6APyHgRZCumSRt0qMsugoLXvRqyaaTNdo2a9Ku-O_tsqLgRRgYmPfhgeEl5AzYFECwq7mQoiimsEcmUEqR8ULzfTJhrIRMFSAOyVFKr4yBzJWekOfHaOyb71a0f0GKm9AMvQ8dDY42Jq4w215apMk33npLW7NqDY2YMG6Cj4m6GFpqUsJ22XzSPtA0rDFiHNZbzwk5cKZJePq9j8nT7c3j7C5bPMzvZ9eLzEid95mWvHa5E8hlKZnRirs6L2BZ1IUsa2Mdd6AcSl06ZELjGOZLBajzeonCluKYXOy86xjeB0x91fpksWlMh2FIFaiCg5BS8_9RKUqlZanZiJ7_QV_DELvxkZECIZjazo_QxpBSRFeto29N_KyAVdtOql0nFYzo5Q5dYUjWY2fxI8Sm_vVyBqJiucolE18EaY1W</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Wotzlaw, Jörn-Frederik</creator><creator>Schaltegger, Urs</creator><creator>Frick, Daniel A</creator><creator>Dungan, Michael A</creator><creator>Gerdes, Axel</creator><creator>Günther, Detlef</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</title><author>Wotzlaw, Jörn-Frederik ; Schaltegger, Urs ; Frick, Daniel A ; Dungan, Michael A ; Gerdes, Axel ; Günther, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>absolute age</topic><topic>alkali feldspar</topic><topic>Ar/Ar</topic><topic>Canyons</topic><topic>Carbon dating</topic><topic>Cenozoic</topic><topic>Chemical elements</topic><topic>Colorado</topic><topic>dates</topic><topic>eruptions</topic><topic>feldspar group</topic><topic>Fish</topic><topic>Fish Canyon Tuff</topic><topic>framework silicates</topic><topic>geochemistry</topic><topic>Geochronology</topic><topic>Geology</topic><topic>igneous and metamorphic rocks</topic><topic>igneous rocks</topic><topic>Magma</topic><topic>magma chambers</topic><topic>magmas</topic><topic>magmatism</topic><topic>Mathematical models</topic><topic>melts</topic><topic>nesosilicates</topic><topic>Oligocene</topic><topic>orthosilicates</topic><topic>Paleogene</topic><topic>Petrology</topic><topic>pyroclastics</topic><topic>Reservoirs</topic><topic>San Juan volcanic field</topic><topic>sanidine</topic><topic>silicate melts</topic><topic>silicates</topic><topic>Tertiary</topic><topic>Thermal evolution</topic><topic>Trace elements</topic><topic>tuff</topic><topic>U/Pb</topic><topic>United States</topic><topic>volcanic rocks</topic><topic>Zircon</topic><topic>zircon group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Schaltegger, Urs</creatorcontrib><creatorcontrib>Frick, Daniel A</creatorcontrib><creatorcontrib>Dungan, Michael A</creatorcontrib><creatorcontrib>Gerdes, Axel</creatorcontrib><creatorcontrib>Günther, Detlef</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wotzlaw, Jörn-Frederik</au><au>Schaltegger, Urs</au><au>Frick, Daniel A</au><au>Dungan, Michael A</au><au>Gerdes, Axel</au><au>Günther, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</atitle><jtitle>Geology (Boulder)</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>41</volume><issue>8</issue><spage>867</spage><epage>870</epage><pages>867-870</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G34366.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2013-08, Vol.41 (8), p.867-870
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_miscellaneous_1762134482
source GeoScienceWorld
subjects absolute age
alkali feldspar
Ar/Ar
Canyons
Carbon dating
Cenozoic
Chemical elements
Colorado
dates
eruptions
feldspar group
Fish
Fish Canyon Tuff
framework silicates
geochemistry
Geochronology
Geology
igneous and metamorphic rocks
igneous rocks
Magma
magma chambers
magmas
magmatism
Mathematical models
melts
nesosilicates
Oligocene
orthosilicates
Paleogene
Petrology
pyroclastics
Reservoirs
San Juan volcanic field
sanidine
silicate melts
silicates
Tertiary
Thermal evolution
Trace elements
tuff
U/Pb
United States
volcanic rocks
Zircon
zircon group
title Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20evolution%20of%20large-volume%20silicic%20magma%20reservoirs%20from%20assembly%20to%20supereruption&rft.jtitle=Geology%20(Boulder)&rft.au=Wotzlaw,%20J%C3%B6rn-Frederik&rft.date=2013-08-01&rft.volume=41&rft.issue=8&rft.spage=867&rft.epage=870&rft.pages=867-870&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G34366.1&rft_dat=%3Cproquest_cross%3E1439784980%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1413307307&rft_id=info:pmid/&rfr_iscdi=true