Loading…
Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption
The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zir...
Saved in:
Published in: | Geology (Boulder) 2013-08, Vol.41 (8), p.867-870 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93 |
---|---|
cites | cdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93 |
container_end_page | 870 |
container_issue | 8 |
container_start_page | 867 |
container_title | Geology (Boulder) |
container_volume | 41 |
creator | Wotzlaw, Jörn-Frederik Schaltegger, Urs Frick, Daniel A Dungan, Michael A Gerdes, Axel Günther, Detlef |
description | The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling. |
doi_str_mv | 10.1130/G34366.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762134482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439784980</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH6APyHgRZCumSRt0qMsugoLXvRqyaaTNdo2a9Ku-O_tsqLgRRgYmPfhgeEl5AzYFECwq7mQoiimsEcmUEqR8ULzfTJhrIRMFSAOyVFKr4yBzJWekOfHaOyb71a0f0GKm9AMvQ8dDY42Jq4w215apMk33npLW7NqDY2YMG6Cj4m6GFpqUsJ22XzSPtA0rDFiHNZbzwk5cKZJePq9j8nT7c3j7C5bPMzvZ9eLzEid95mWvHa5E8hlKZnRirs6L2BZ1IUsa2Mdd6AcSl06ZELjGOZLBajzeonCluKYXOy86xjeB0x91fpksWlMh2FIFaiCg5BS8_9RKUqlZanZiJ7_QV_DELvxkZECIZjazo_QxpBSRFeto29N_KyAVdtOql0nFYzo5Q5dYUjWY2fxI8Sm_vVyBqJiucolE18EaY1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1413307307</pqid></control><display><type>article</type><title>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</title><source>GeoScienceWorld</source><creator>Wotzlaw, Jörn-Frederik ; Schaltegger, Urs ; Frick, Daniel A ; Dungan, Michael A ; Gerdes, Axel ; Günther, Detlef</creator><creatorcontrib>Wotzlaw, Jörn-Frederik ; Schaltegger, Urs ; Frick, Daniel A ; Dungan, Michael A ; Gerdes, Axel ; Günther, Detlef</creatorcontrib><description>The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G34366.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>absolute age ; alkali feldspar ; Ar/Ar ; Canyons ; Carbon dating ; Cenozoic ; Chemical elements ; Colorado ; dates ; eruptions ; feldspar group ; Fish ; Fish Canyon Tuff ; framework silicates ; geochemistry ; Geochronology ; Geology ; igneous and metamorphic rocks ; igneous rocks ; Magma ; magma chambers ; magmas ; magmatism ; Mathematical models ; melts ; nesosilicates ; Oligocene ; orthosilicates ; Paleogene ; Petrology ; pyroclastics ; Reservoirs ; San Juan volcanic field ; sanidine ; silicate melts ; silicates ; Tertiary ; Thermal evolution ; Trace elements ; tuff ; U/Pb ; United States ; volcanic rocks ; Zircon ; zircon group</subject><ispartof>Geology (Boulder), 2013-08, Vol.41 (8), p.867-870</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</citedby><cites>FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G34366.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Schaltegger, Urs</creatorcontrib><creatorcontrib>Frick, Daniel A</creatorcontrib><creatorcontrib>Dungan, Michael A</creatorcontrib><creatorcontrib>Gerdes, Axel</creatorcontrib><creatorcontrib>Günther, Detlef</creatorcontrib><title>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</title><title>Geology (Boulder)</title><description>The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.</description><subject>absolute age</subject><subject>alkali feldspar</subject><subject>Ar/Ar</subject><subject>Canyons</subject><subject>Carbon dating</subject><subject>Cenozoic</subject><subject>Chemical elements</subject><subject>Colorado</subject><subject>dates</subject><subject>eruptions</subject><subject>feldspar group</subject><subject>Fish</subject><subject>Fish Canyon Tuff</subject><subject>framework silicates</subject><subject>geochemistry</subject><subject>Geochronology</subject><subject>Geology</subject><subject>igneous and metamorphic rocks</subject><subject>igneous rocks</subject><subject>Magma</subject><subject>magma chambers</subject><subject>magmas</subject><subject>magmatism</subject><subject>Mathematical models</subject><subject>melts</subject><subject>nesosilicates</subject><subject>Oligocene</subject><subject>orthosilicates</subject><subject>Paleogene</subject><subject>Petrology</subject><subject>pyroclastics</subject><subject>Reservoirs</subject><subject>San Juan volcanic field</subject><subject>sanidine</subject><subject>silicate melts</subject><subject>silicates</subject><subject>Tertiary</subject><subject>Thermal evolution</subject><subject>Trace elements</subject><subject>tuff</subject><subject>U/Pb</subject><subject>United States</subject><subject>volcanic rocks</subject><subject>Zircon</subject><subject>zircon group</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouH6APyHgRZCumSRt0qMsugoLXvRqyaaTNdo2a9Ku-O_tsqLgRRgYmPfhgeEl5AzYFECwq7mQoiimsEcmUEqR8ULzfTJhrIRMFSAOyVFKr4yBzJWekOfHaOyb71a0f0GKm9AMvQ8dDY42Jq4w215apMk33npLW7NqDY2YMG6Cj4m6GFpqUsJ22XzSPtA0rDFiHNZbzwk5cKZJePq9j8nT7c3j7C5bPMzvZ9eLzEid95mWvHa5E8hlKZnRirs6L2BZ1IUsa2Mdd6AcSl06ZELjGOZLBajzeonCluKYXOy86xjeB0x91fpksWlMh2FIFaiCg5BS8_9RKUqlZanZiJ7_QV_DELvxkZECIZjazo_QxpBSRFeto29N_KyAVdtOql0nFYzo5Q5dYUjWY2fxI8Sm_vVyBqJiucolE18EaY1W</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Wotzlaw, Jörn-Frederik</creator><creator>Schaltegger, Urs</creator><creator>Frick, Daniel A</creator><creator>Dungan, Michael A</creator><creator>Gerdes, Axel</creator><creator>Günther, Detlef</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</title><author>Wotzlaw, Jörn-Frederik ; Schaltegger, Urs ; Frick, Daniel A ; Dungan, Michael A ; Gerdes, Axel ; Günther, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>absolute age</topic><topic>alkali feldspar</topic><topic>Ar/Ar</topic><topic>Canyons</topic><topic>Carbon dating</topic><topic>Cenozoic</topic><topic>Chemical elements</topic><topic>Colorado</topic><topic>dates</topic><topic>eruptions</topic><topic>feldspar group</topic><topic>Fish</topic><topic>Fish Canyon Tuff</topic><topic>framework silicates</topic><topic>geochemistry</topic><topic>Geochronology</topic><topic>Geology</topic><topic>igneous and metamorphic rocks</topic><topic>igneous rocks</topic><topic>Magma</topic><topic>magma chambers</topic><topic>magmas</topic><topic>magmatism</topic><topic>Mathematical models</topic><topic>melts</topic><topic>nesosilicates</topic><topic>Oligocene</topic><topic>orthosilicates</topic><topic>Paleogene</topic><topic>Petrology</topic><topic>pyroclastics</topic><topic>Reservoirs</topic><topic>San Juan volcanic field</topic><topic>sanidine</topic><topic>silicate melts</topic><topic>silicates</topic><topic>Tertiary</topic><topic>Thermal evolution</topic><topic>Trace elements</topic><topic>tuff</topic><topic>U/Pb</topic><topic>United States</topic><topic>volcanic rocks</topic><topic>Zircon</topic><topic>zircon group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Schaltegger, Urs</creatorcontrib><creatorcontrib>Frick, Daniel A</creatorcontrib><creatorcontrib>Dungan, Michael A</creatorcontrib><creatorcontrib>Gerdes, Axel</creatorcontrib><creatorcontrib>Günther, Detlef</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wotzlaw, Jörn-Frederik</au><au>Schaltegger, Urs</au><au>Frick, Daniel A</au><au>Dungan, Michael A</au><au>Gerdes, Axel</au><au>Günther, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption</atitle><jtitle>Geology (Boulder)</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>41</volume><issue>8</issue><spage>867</spage><epage>870</epage><pages>867-870</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The most voluminous silicic volcanic eruptions in the geological past were associated with caldera collapses above giant silicic magma reservoirs. The thermal evolution of these sub-caldera magma reservoirs controls the volume of eruptible magma and eruptive style. Here we combine high-precision zircon U-Pb geochronology, trace element analyses of the same mineral grains, and mass balance modeling of zircon trace element compositions allowing us to track the thermal and chemical evolution of the Oligocene Fish Canyon Tuff magma reservoir (Colorado, United States) as a function of absolute time. Systematic compositional variations in U-Pb dated zircons record ∼440 k.y. of magma evolution. An early phase of volumetric growth was followed by a period of cooling and crystallization, during which the Fish Canyon magma approached complete solidification. Subsequent remelting, due to underplated andesitic recharge magmas, began 219 ± 45 k.y. prior to eruption, and led to the generation of ∼5000 km3 of eruptible crystal-rich (∼45 vol%) dacite. Age-equivalent, but compositionally different, zircons in an andesite enclave from late-erupted Fish Canyon Tuff tie the growth and thermal evolution of the upper-crustal reservoir to a lower-crustal magma processing zone. Our results demonstrate that the combination of high-precision dating and trace element analyses of accessory zircons can reveal invaluable information about the chemical and thermal histories of silicic magmatic systems and provides critical input parameters for fluid dynamic modeling.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G34366.1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2013-08, Vol.41 (8), p.867-870 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762134482 |
source | GeoScienceWorld |
subjects | absolute age alkali feldspar Ar/Ar Canyons Carbon dating Cenozoic Chemical elements Colorado dates eruptions feldspar group Fish Fish Canyon Tuff framework silicates geochemistry Geochronology Geology igneous and metamorphic rocks igneous rocks Magma magma chambers magmas magmatism Mathematical models melts nesosilicates Oligocene orthosilicates Paleogene Petrology pyroclastics Reservoirs San Juan volcanic field sanidine silicate melts silicates Tertiary Thermal evolution Trace elements tuff U/Pb United States volcanic rocks Zircon zircon group |
title | Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20evolution%20of%20large-volume%20silicic%20magma%20reservoirs%20from%20assembly%20to%20supereruption&rft.jtitle=Geology%20(Boulder)&rft.au=Wotzlaw,%20J%C3%B6rn-Frederik&rft.date=2013-08-01&rft.volume=41&rft.issue=8&rft.spage=867&rft.epage=870&rft.pages=867-870&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G34366.1&rft_dat=%3Cproquest_cross%3E1439784980%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-842df5f3e24940a872fd561b6d649dacf2f17fe489fe038ed565b71e85dbe3c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1413307307&rft_id=info:pmid/&rfr_iscdi=true |