Loading…

Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis

Perfluorobutanesulfonate (PFBS), as a substitute for perfluorooctanesulfonate (PFOS), is widespread in the environment and biotic samples as well as PFOS. To investigate effects of PFOS and PFBS on the growth and sexual development of amphibians, we exposed Xenopus laevis tadpoles at a series of con...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology (London) 2013-09, Vol.22 (7), p.1133-1144
Main Authors: Lou, Qin-Qin, Zhang, Yin-Feng, Zhou, Zhen, Shi, Ya-Li, Ge, Ya-Nan, Ren, Dong-Kai, Xu, Hai-Ming, Zhao, Ya-Xian, Wei, Wu-Ji, Qin, Zhan-Fen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perfluorobutanesulfonate (PFBS), as a substitute for perfluorooctanesulfonate (PFOS), is widespread in the environment and biotic samples as well as PFOS. To investigate effects of PFOS and PFBS on the growth and sexual development of amphibians, we exposed Xenopus laevis tadpoles at a series of concentrations of PFOS and PFBS (0.1; 1; 100; 1,000 μg/l) as well as 17-beta-estradiol (E2, 100 ng/l) and 5 alpha-androstan-17-beta-ol-3-one (DHT, 100 ng/l) from stage 46/47 to 2 months postmetamorphosis. We found that neither PFOS nor PFBS had a significant effect on the survival and growth. However, they caused hepatohistological impairment at higher concentrations (100; 1,000 μg/l). Unlike E2, PFOS at all concentrations did not alter the sex ratio and induce intersex, but caused degeneration of spermatogonia in testes except for the lowest concentration. PFBS had no effect on the sex ratio and gonadal histology. PFOS and PFBS promoted expression of estrogen receptor (ER) and androgen receptor (AR), but not affected aromatase expression in the brain. The increase in expression of ER and AR suggests an increase in the responsiveness to the corresponding sex hormone and potential effects on sexual development. Our results show that PFBS as well as PFOS have adverse effects on hepato-histology and sexual development on X. laevis . Also, PFOS- and PFBS-induced increase in ER and AR expression highlights the need to further study effects of PFOS and PFBS on subsequently gonadal development, sexual dimorphism, and secondary sex characteristics in X. laevis. It is debatable that PFBS is widely used as a substitute of PFOS.
ISSN:0963-9292
1573-3017
DOI:10.1007/s10646-013-1100-y