Loading…

Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue

Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2014-01, Vol.2014 (2014), p.1-10
Main Authors: El Bari, Nezha, Saidi, Tarik, Haddi, Zouhair, Tahri, Khalid, Bougrini, Madiha, Bouchikhi, Benachir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83
cites cdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83
container_end_page 10
container_issue 2014
container_start_page 1
container_title Journal of sensors
container_volume 2014
creator El Bari, Nezha
Saidi, Tarik
Haddi, Zouhair
Tahri, Khalid
Bougrini, Madiha
Bouchikhi, Benachir
description Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.
doi_str_mv 10.1155/2014/245831
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762145013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3418517181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AiCj5P3iXgRZTVTN49Lro-QPSyircS2-mapZusSYvst7drRcSLp2SGXwYm_yw7BHoOIOUFoyAumJCGw0a2A8rokWbKbP7c5ct2tpvSnFLFNec72ewKWyxbFzwJNRlXXdNitF-182QcZ9aTR9eQ1xV5Ss7PSF9Pmv5FDN6V5CEk7FsVseQ5NK1dLLCNff8XmQY_63A_26ptk_Dg-9zLpteT6eXt6P7x5u5yfD-yiol2hFwplFIwUWoNpraVfBV5bqiRGlFXigvKQNJSK6gZMGuhNpxyQGnQGr6XnQxjlzG8d5jaYuFSiU1jPYYuFaAVAyEp8P-pYjo3Uur11OM_dB666Ps9iv7XjchBybU6G1QZQ0oR62IZ3cLGVQG0WMdTrOMphnh6fTroN-cr--H-wUcDxp5gbX9hwXIw_BMIM5ZJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558491658</pqid></control><display><type>article</type><title>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>El Bari, Nezha ; Saidi, Tarik ; Haddi, Zouhair ; Tahri, Khalid ; Bougrini, Madiha ; Bouchikhi, Benachir</creator><contributor>Matatagui, Daniel</contributor><creatorcontrib>El Bari, Nezha ; Saidi, Tarik ; Haddi, Zouhair ; Tahri, Khalid ; Bougrini, Madiha ; Bouchikhi, Benachir ; Matatagui, Daniel</creatorcontrib><description>Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2014/245831</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Chromatography ; Classification ; Data processing ; Electronic noses ; Food ; Food quality ; Fraud ; Helianthus ; Mass spectrometry ; Metal oxide semiconductors ; Methods ; Pattern recognition ; Principal components analysis ; Sensors ; Success ; Sunflower oil ; Support vector machines ; Vegetable oils ; Voltammetry</subject><ispartof>Journal of sensors, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Madiha Bougrini et al.</rights><rights>Copyright © 2014 Madiha Bougrini et al. Madiha Bougrini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</citedby><cites>FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1558491658/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1558491658?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Matatagui, Daniel</contributor><creatorcontrib>El Bari, Nezha</creatorcontrib><creatorcontrib>Saidi, Tarik</creatorcontrib><creatorcontrib>Haddi, Zouhair</creatorcontrib><creatorcontrib>Tahri, Khalid</creatorcontrib><creatorcontrib>Bougrini, Madiha</creatorcontrib><creatorcontrib>Bouchikhi, Benachir</creatorcontrib><title>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</title><title>Journal of sensors</title><description>Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.</description><subject>Chromatography</subject><subject>Classification</subject><subject>Data processing</subject><subject>Electronic noses</subject><subject>Food</subject><subject>Food quality</subject><subject>Fraud</subject><subject>Helianthus</subject><subject>Mass spectrometry</subject><subject>Metal oxide semiconductors</subject><subject>Methods</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Sensors</subject><subject>Success</subject><subject>Sunflower oil</subject><subject>Support vector machines</subject><subject>Vegetable oils</subject><subject>Voltammetry</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0UtLxDAQB_AiCj5P3iXgRZTVTN49Lro-QPSyircS2-mapZusSYvst7drRcSLp2SGXwYm_yw7BHoOIOUFoyAumJCGw0a2A8rokWbKbP7c5ct2tpvSnFLFNec72ewKWyxbFzwJNRlXXdNitF-182QcZ9aTR9eQ1xV5Ss7PSF9Pmv5FDN6V5CEk7FsVseQ5NK1dLLCNff8XmQY_63A_26ptk_Dg-9zLpteT6eXt6P7x5u5yfD-yiol2hFwplFIwUWoNpraVfBV5bqiRGlFXigvKQNJSK6gZMGuhNpxyQGnQGr6XnQxjlzG8d5jaYuFSiU1jPYYuFaAVAyEp8P-pYjo3Uur11OM_dB666Ps9iv7XjchBybU6G1QZQ0oR62IZ3cLGVQG0WMdTrOMphnh6fTroN-cr--H-wUcDxp5gbX9hwXIw_BMIM5ZJ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>El Bari, Nezha</creator><creator>Saidi, Tarik</creator><creator>Haddi, Zouhair</creator><creator>Tahri, Khalid</creator><creator>Bougrini, Madiha</creator><creator>Bouchikhi, Benachir</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QR</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140101</creationdate><title>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</title><author>El Bari, Nezha ; Saidi, Tarik ; Haddi, Zouhair ; Tahri, Khalid ; Bougrini, Madiha ; Bouchikhi, Benachir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chromatography</topic><topic>Classification</topic><topic>Data processing</topic><topic>Electronic noses</topic><topic>Food</topic><topic>Food quality</topic><topic>Fraud</topic><topic>Helianthus</topic><topic>Mass spectrometry</topic><topic>Metal oxide semiconductors</topic><topic>Methods</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Sensors</topic><topic>Success</topic><topic>Sunflower oil</topic><topic>Support vector machines</topic><topic>Vegetable oils</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Bari, Nezha</creatorcontrib><creatorcontrib>Saidi, Tarik</creatorcontrib><creatorcontrib>Haddi, Zouhair</creatorcontrib><creatorcontrib>Tahri, Khalid</creatorcontrib><creatorcontrib>Bougrini, Madiha</creatorcontrib><creatorcontrib>Bouchikhi, Benachir</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Chemoreception Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Bari, Nezha</au><au>Saidi, Tarik</au><au>Haddi, Zouhair</au><au>Tahri, Khalid</au><au>Bougrini, Madiha</au><au>Bouchikhi, Benachir</au><au>Matatagui, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</atitle><jtitle>Journal of sensors</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/245831</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2014-01, Vol.2014 (2014), p.1-10
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_miscellaneous_1762145013
source Publicly Available Content Database; Wiley Open Access
subjects Chromatography
Classification
Data processing
Electronic noses
Food
Food quality
Fraud
Helianthus
Mass spectrometry
Metal oxide semiconductors
Methods
Pattern recognition
Principal components analysis
Sensors
Success
Sunflower oil
Support vector machines
Vegetable oils
Voltammetry
title Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Adulteration%20in%20Argan%20Oil%20by%20Using%20an%20Electronic%20Nose%20and%20a%20Voltammetric%20Electronic%20Tongue&rft.jtitle=Journal%20of%20sensors&rft.au=El%20Bari,%20Nezha&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2014/245831&rft_dat=%3Cproquest_cross%3E3418517181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1558491658&rft_id=info:pmid/&rfr_iscdi=true