Loading…
Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue
Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the c...
Saved in:
Published in: | Journal of sensors 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83 |
---|---|
cites | cdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83 |
container_end_page | 10 |
container_issue | 2014 |
container_start_page | 1 |
container_title | Journal of sensors |
container_volume | 2014 |
creator | El Bari, Nezha Saidi, Tarik Haddi, Zouhair Tahri, Khalid Bougrini, Madiha Bouchikhi, Benachir |
description | Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil. |
doi_str_mv | 10.1155/2014/245831 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762145013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3418517181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AiCj5P3iXgRZTVTN49Lro-QPSyircS2-mapZusSYvst7drRcSLp2SGXwYm_yw7BHoOIOUFoyAumJCGw0a2A8rokWbKbP7c5ct2tpvSnFLFNec72ewKWyxbFzwJNRlXXdNitF-182QcZ9aTR9eQ1xV5Ss7PSF9Pmv5FDN6V5CEk7FsVseQ5NK1dLLCNff8XmQY_63A_26ptk_Dg-9zLpteT6eXt6P7x5u5yfD-yiol2hFwplFIwUWoNpraVfBV5bqiRGlFXigvKQNJSK6gZMGuhNpxyQGnQGr6XnQxjlzG8d5jaYuFSiU1jPYYuFaAVAyEp8P-pYjo3Uur11OM_dB666Ps9iv7XjchBybU6G1QZQ0oR62IZ3cLGVQG0WMdTrOMphnh6fTroN-cr--H-wUcDxp5gbX9hwXIw_BMIM5ZJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558491658</pqid></control><display><type>article</type><title>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>El Bari, Nezha ; Saidi, Tarik ; Haddi, Zouhair ; Tahri, Khalid ; Bougrini, Madiha ; Bouchikhi, Benachir</creator><contributor>Matatagui, Daniel</contributor><creatorcontrib>El Bari, Nezha ; Saidi, Tarik ; Haddi, Zouhair ; Tahri, Khalid ; Bougrini, Madiha ; Bouchikhi, Benachir ; Matatagui, Daniel</creatorcontrib><description>Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2014/245831</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Chromatography ; Classification ; Data processing ; Electronic noses ; Food ; Food quality ; Fraud ; Helianthus ; Mass spectrometry ; Metal oxide semiconductors ; Methods ; Pattern recognition ; Principal components analysis ; Sensors ; Success ; Sunflower oil ; Support vector machines ; Vegetable oils ; Voltammetry</subject><ispartof>Journal of sensors, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Madiha Bougrini et al.</rights><rights>Copyright © 2014 Madiha Bougrini et al. Madiha Bougrini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</citedby><cites>FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1558491658/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1558491658?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Matatagui, Daniel</contributor><creatorcontrib>El Bari, Nezha</creatorcontrib><creatorcontrib>Saidi, Tarik</creatorcontrib><creatorcontrib>Haddi, Zouhair</creatorcontrib><creatorcontrib>Tahri, Khalid</creatorcontrib><creatorcontrib>Bougrini, Madiha</creatorcontrib><creatorcontrib>Bouchikhi, Benachir</creatorcontrib><title>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</title><title>Journal of sensors</title><description>Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.</description><subject>Chromatography</subject><subject>Classification</subject><subject>Data processing</subject><subject>Electronic noses</subject><subject>Food</subject><subject>Food quality</subject><subject>Fraud</subject><subject>Helianthus</subject><subject>Mass spectrometry</subject><subject>Metal oxide semiconductors</subject><subject>Methods</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Sensors</subject><subject>Success</subject><subject>Sunflower oil</subject><subject>Support vector machines</subject><subject>Vegetable oils</subject><subject>Voltammetry</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0UtLxDAQB_AiCj5P3iXgRZTVTN49Lro-QPSyircS2-mapZusSYvst7drRcSLp2SGXwYm_yw7BHoOIOUFoyAumJCGw0a2A8rokWbKbP7c5ct2tpvSnFLFNec72ewKWyxbFzwJNRlXXdNitF-182QcZ9aTR9eQ1xV5Ss7PSF9Pmv5FDN6V5CEk7FsVseQ5NK1dLLCNff8XmQY_63A_26ptk_Dg-9zLpteT6eXt6P7x5u5yfD-yiol2hFwplFIwUWoNpraVfBV5bqiRGlFXigvKQNJSK6gZMGuhNpxyQGnQGr6XnQxjlzG8d5jaYuFSiU1jPYYuFaAVAyEp8P-pYjo3Uur11OM_dB666Ps9iv7XjchBybU6G1QZQ0oR62IZ3cLGVQG0WMdTrOMphnh6fTroN-cr--H-wUcDxp5gbX9hwXIw_BMIM5ZJ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>El Bari, Nezha</creator><creator>Saidi, Tarik</creator><creator>Haddi, Zouhair</creator><creator>Tahri, Khalid</creator><creator>Bougrini, Madiha</creator><creator>Bouchikhi, Benachir</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QR</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140101</creationdate><title>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</title><author>El Bari, Nezha ; Saidi, Tarik ; Haddi, Zouhair ; Tahri, Khalid ; Bougrini, Madiha ; Bouchikhi, Benachir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chromatography</topic><topic>Classification</topic><topic>Data processing</topic><topic>Electronic noses</topic><topic>Food</topic><topic>Food quality</topic><topic>Fraud</topic><topic>Helianthus</topic><topic>Mass spectrometry</topic><topic>Metal oxide semiconductors</topic><topic>Methods</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Sensors</topic><topic>Success</topic><topic>Sunflower oil</topic><topic>Support vector machines</topic><topic>Vegetable oils</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Bari, Nezha</creatorcontrib><creatorcontrib>Saidi, Tarik</creatorcontrib><creatorcontrib>Haddi, Zouhair</creatorcontrib><creatorcontrib>Tahri, Khalid</creatorcontrib><creatorcontrib>Bougrini, Madiha</creatorcontrib><creatorcontrib>Bouchikhi, Benachir</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Chemoreception Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Bari, Nezha</au><au>Saidi, Tarik</au><au>Haddi, Zouhair</au><au>Tahri, Khalid</au><au>Bougrini, Madiha</au><au>Bouchikhi, Benachir</au><au>Matatagui, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue</atitle><jtitle>Journal of sensors</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/245831</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2014-01, Vol.2014 (2014), p.1-10 |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762145013 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Chromatography Classification Data processing Electronic noses Food Food quality Fraud Helianthus Mass spectrometry Metal oxide semiconductors Methods Pattern recognition Principal components analysis Sensors Success Sunflower oil Support vector machines Vegetable oils Voltammetry |
title | Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Adulteration%20in%20Argan%20Oil%20by%20Using%20an%20Electronic%20Nose%20and%20a%20Voltammetric%20Electronic%20Tongue&rft.jtitle=Journal%20of%20sensors&rft.au=El%20Bari,%20Nezha&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2014/245831&rft_dat=%3Cproquest_cross%3E3418517181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a624t-e366e55424c7718fad5b49980857ee7d63402150c761f212aa1f83031e58ea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1558491658&rft_id=info:pmid/&rfr_iscdi=true |