Loading…
Light propagation beyond the mean-field theory of standard optics
With ready access to massive computer clusters we may now study light propagation in a dense cold atomic gas by means of basically exact numerical simulations. We report on a direct comparison between traditional optics, that is, electrodynamics of a polarizable medium, and numerical simulations in...
Saved in:
Published in: | Optics express 2016-01, Vol.24 (2), p.993-1001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With ready access to massive computer clusters we may now study light propagation in a dense cold atomic gas by means of basically exact numerical simulations. We report on a direct comparison between traditional optics, that is, electrodynamics of a polarizable medium, and numerical simulations in an elementary problem of light propagating through a slab of matter. The standard optics fails already at quite low atom densities, and the failure becomes dramatic when the average interatomic separation is reduced to around k(-1), where k is the wave number of resonant light. The difference between the two solutions originates from correlations between the atoms induced by light-mediated dipole-dipole interactions. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.24.000993 |