Loading…

The Role of Interleukin-10 and Hyaluronan in Murine Fetal Fibroblast Function In Vitro: Implications for Recapitulating Fetal Regenerative Wound Healing: e0124302

Background Mid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fet...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2015-05, Vol.10 (5)
Main Authors: Balaji, Swathi, King, Alice, Marsh, Emily, LeSaint, Maria, Bhattacharya, Sukanta S, Han, Nathaniel, Dhamija, Yashu, Ranjan, Rajeev, Le, Louis D, Bollyky, Paul L
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Mid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essential to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be recapitulated in adult fibroblasts via supplementation with IL-10 via an HA dependent process. Methodology/Principal Findings To evaluate the differences in functional profile, we compared metabolism (MTS assay), apoptosis (caspase-3 staining), migration (scratch wound assay) and invasion (transwell assay) between C57Bl/6J murine fetal (E14.5) and adult (8 weeks) fibroblasts. We found that fetal fibroblasts have lower rates of metabolism and apoptosis, and an increased ability to migrate and invade compared to adult fibroblasts, and that these effects were dependent on IL-10 and HA synthase activity. Further, addition of IL-10 to adult fibroblasts resulted in increased fibroblast migration and invasion and recapitulated the fetal phenotype in an HA-dependent manner. Conclusions/Significance Our data demonstrates the functional differences between fetal and adult fibroblasts, and that IL-10 mediated HA synthesis is essential for the fetal fibroblasts' enhanced invasion and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitulate this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of IL-10 in regenerative wound healing.
ISSN:1932-6203
DOI:10.1371/journal.pone.0124302