Loading…

Knockdown of Caveolin-1 by Antisense Oligonucleotides Impairs Angiogenesis in Vitro and in Vivo

Knock-out of the gene coding for caveolin-1, the main organizer of caveolae, has not yet been performed. We devised a strategy to knock-down caveolin-1 gene expression using antisense oligodeoxynucleotides (ODNs). Seven ODNs, covering different regions of caveolin-1 mRNA, were screened by Western bl...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2000-09, Vol.276 (2), p.756-761
Main Authors: Griffoni, Cristiana, Spisni, Enzo, Santi, Spartaco, Riccio, Massimo, Guarnieri, Tiziana, Tomasi, Vittorio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Knock-out of the gene coding for caveolin-1, the main organizer of caveolae, has not yet been performed. We devised a strategy to knock-down caveolin-1 gene expression using antisense oligodeoxynucleotides (ODNs). Seven ODNs, covering different regions of caveolin-1 mRNA, were screened by Western blot analysis of caveolin-1 levels. The most active and specific was found to reduce caveolin-1 protein levels by 70% at 1 μM concentration and its action, as demonstrated by a marked reduction (about 50%) in caveolin-1 mRNA levels, was due to a true antisense mechanism. In HUVEC treated with the active ODN, caveolae were undetectable by confocal and electron microscopy, while their number was not affected when cells were treated with a scrambled ODN. Using the fibrin gel 3 D angiogenesis test we established that the active (but not the scrambled) ODN strongly suppressed capillary-like tube formation. Moreover, an antisense tailored against chicken caveolin-1 mRNA, when tested using the chorio-allantoic membrane technique, dramatically reduced vessel formation at doses (10–20 μg) under which control ODNs were ineffective and devoid of toxicity. Thus, it is likely that caveolin-1 down regulation, followed by caveolae disruption, impairs angiogenesis in vitro and in vivo.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.2000.3484