Loading…
Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation
A correct description of electronically excited states is critical to the interpretation of visible–ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theo...
Saved in:
Published in: | The journal of physical chemistry letters 2016-02, Vol.7 (3), p.586-591 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A correct description of electronically excited states is critical to the interpretation of visible–ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.5b02773 |