Loading…
Compacting Chromatin to Ensure Muscle Satellite Cell Quiescence
Satellite cells comprise a pool of quiescent stem cells that repair muscle damage, but the mechanisms enforcing their quiescence are poorly defined. In this issue of Cell Stem Cell, Boonsanay et al. (2016) show that the histone methyltransferase Suv4-20H1 maintains satellite cell quiescence by promo...
Saved in:
Published in: | Cell stem cell 2016-02, Vol.18 (2), p.162-164 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Satellite cells comprise a pool of quiescent stem cells that repair muscle damage, but the mechanisms enforcing their quiescence are poorly defined. In this issue of Cell Stem Cell, Boonsanay et al. (2016) show that the histone methyltransferase Suv4-20H1 maintains satellite cell quiescence by promoting a heterochromatic state through transcriptional repression of the myogenic master regulator MyoD.
Satellite cells comprise a pool of quiescent stem cells that repair muscle damage, but the mechanisms enforcing their quiescence are poorly defined. In this issue of Cell Stem Cell, Boonsanay et al. (2016) show that the histone methyltransferase Suv4-20H1 maintains satellite cell quiescence by promoting a heterochromatic state through transcriptional repression of the myogenic master regulator MyoD. |
---|---|
ISSN: | 1934-5909 1875-9777 |
DOI: | 10.1016/j.stem.2016.01.009 |