Loading…
The spread of AIDS among interactive transmission groups
We consider the spread of an AIDS epidemic among N interacting communities (cities, say), each having at least one of the major four HIV transmission groups: 1. (i) homosexual/bisexual men, 2. (ii) blood transfusion recipients, 3. (iii) intravenous drug users, or 4. (iv) heterosexuals. Our model con...
Saved in:
Published in: | Mathematical and computer modelling 2000-07, Vol.32 (1), p.169-180 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3 |
container_end_page | 180 |
container_issue | 1 |
container_start_page | 169 |
container_title | Mathematical and computer modelling |
container_volume | 32 |
creator | Haynatzka, V.R Gani, J Rachev, S.T |
description | We consider the spread of an AIDS epidemic among
N interacting communities (cities, say), each having at least one of the major four HIV transmission groups:
1.
(i) homosexual/bisexual men,
2.
(ii) blood transfusion recipients,
3.
(iii) intravenous drug users, or
4.
(iv) heterosexuals.
Our model consists of a system of 4
N differential equations (d.e.s). We show that as
N → ∞, the number of infectives in each community converges to the unique solution of a Liouville type stochastic differential equation (s.d.e.). |
doi_str_mv | 10.1016/S0895-7177(00)00127-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17640056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895717700001278</els_id><sourcerecordid>17640056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwE5A8IRgCz3EcOxOq-KxUiaFlthz7pRi1cbDTSvx70haxMr3l3Kt3DyGXDG4ZsPJuDqoSmWRSXgPcALBcZuqIjJiSeVYVsjomoz_klJyl9AkAogI1ImrxgTR1EY2joaGT6eOcmnVol9S3PUZje79F2kfTprVPyYeWLmPYdOmcnDRmlfDi947J-_PT4uE1m729TB8ms8xyrvqM57wxToi8EijLWkENdZ6DAyOKGiRya1EUUHGRS4vKNpYL4M4CWlU74_iYXB16uxi-Nph6PfxhcbUyLYZN0kyWxTCmHEBxAG0MKUVsdBf92sRvzUDvPOm9J72ToAH03pNWQ-7-kMNhxdZj1Ml6bC06H9H22gX_T8MPn65vUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17640056</pqid></control><display><type>article</type><title>The spread of AIDS among interactive transmission groups</title><source>Elsevier</source><creator>Haynatzka, V.R ; Gani, J ; Rachev, S.T</creator><creatorcontrib>Haynatzka, V.R ; Gani, J ; Rachev, S.T</creatorcontrib><description>We consider the spread of an AIDS epidemic among
N interacting communities (cities, say), each having at least one of the major four HIV transmission groups:
1.
(i) homosexual/bisexual men,
2.
(ii) blood transfusion recipients,
3.
(iii) intravenous drug users, or
4.
(iv) heterosexuals.
Our model consists of a system of 4
N differential equations (d.e.s). We show that as
N → ∞, the number of infectives in each community converges to the unique solution of a Liouville type stochastic differential equation (s.d.e.).</description><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><identifier>DOI: 10.1016/S0895-7177(00)00127-8</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>AIDS epidemic ; Diffusions with interacting drifts ; Human immunodeficiency virus ; Probability metrics ; Rate of convergence</subject><ispartof>Mathematical and computer modelling, 2000-07, Vol.32 (1), p.169-180</ispartof><rights>2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3</citedby><cites>FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Haynatzka, V.R</creatorcontrib><creatorcontrib>Gani, J</creatorcontrib><creatorcontrib>Rachev, S.T</creatorcontrib><title>The spread of AIDS among interactive transmission groups</title><title>Mathematical and computer modelling</title><description>We consider the spread of an AIDS epidemic among
N interacting communities (cities, say), each having at least one of the major four HIV transmission groups:
1.
(i) homosexual/bisexual men,
2.
(ii) blood transfusion recipients,
3.
(iii) intravenous drug users, or
4.
(iv) heterosexuals.
Our model consists of a system of 4
N differential equations (d.e.s). We show that as
N → ∞, the number of infectives in each community converges to the unique solution of a Liouville type stochastic differential equation (s.d.e.).</description><subject>AIDS epidemic</subject><subject>Diffusions with interacting drifts</subject><subject>Human immunodeficiency virus</subject><subject>Probability metrics</subject><subject>Rate of convergence</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwE5A8IRgCz3EcOxOq-KxUiaFlthz7pRi1cbDTSvx70haxMr3l3Kt3DyGXDG4ZsPJuDqoSmWRSXgPcALBcZuqIjJiSeVYVsjomoz_klJyl9AkAogI1ImrxgTR1EY2joaGT6eOcmnVol9S3PUZje79F2kfTprVPyYeWLmPYdOmcnDRmlfDi947J-_PT4uE1m729TB8ms8xyrvqM57wxToi8EijLWkENdZ6DAyOKGiRya1EUUHGRS4vKNpYL4M4CWlU74_iYXB16uxi-Nph6PfxhcbUyLYZN0kyWxTCmHEBxAG0MKUVsdBf92sRvzUDvPOm9J72ToAH03pNWQ-7-kMNhxdZj1Ml6bC06H9H22gX_T8MPn65vUw</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Haynatzka, V.R</creator><creator>Gani, J</creator><creator>Rachev, S.T</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20000701</creationdate><title>The spread of AIDS among interactive transmission groups</title><author>Haynatzka, V.R ; Gani, J ; Rachev, S.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>AIDS epidemic</topic><topic>Diffusions with interacting drifts</topic><topic>Human immunodeficiency virus</topic><topic>Probability metrics</topic><topic>Rate of convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haynatzka, V.R</creatorcontrib><creatorcontrib>Gani, J</creatorcontrib><creatorcontrib>Rachev, S.T</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haynatzka, V.R</au><au>Gani, J</au><au>Rachev, S.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spread of AIDS among interactive transmission groups</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>32</volume><issue>1</issue><spage>169</spage><epage>180</epage><pages>169-180</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><abstract>We consider the spread of an AIDS epidemic among
N interacting communities (cities, say), each having at least one of the major four HIV transmission groups:
1.
(i) homosexual/bisexual men,
2.
(ii) blood transfusion recipients,
3.
(iii) intravenous drug users, or
4.
(iv) heterosexuals.
Our model consists of a system of 4
N differential equations (d.e.s). We show that as
N → ∞, the number of infectives in each community converges to the unique solution of a Liouville type stochastic differential equation (s.d.e.).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0895-7177(00)00127-8</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-7177 |
ispartof | Mathematical and computer modelling, 2000-07, Vol.32 (1), p.169-180 |
issn | 0895-7177 1872-9479 |
language | eng |
recordid | cdi_proquest_miscellaneous_17640056 |
source | Elsevier |
subjects | AIDS epidemic Diffusions with interacting drifts Human immunodeficiency virus Probability metrics Rate of convergence |
title | The spread of AIDS among interactive transmission groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spread%20of%20AIDS%20among%20interactive%20transmission%20groups&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=Haynatzka,%20V.R&rft.date=2000-07-01&rft.volume=32&rft.issue=1&rft.spage=169&rft.epage=180&rft.pages=169-180&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/10.1016/S0895-7177(00)00127-8&rft_dat=%3Cproquest_cross%3E17640056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-323fad55295e76b80b0b220d0a54b07e3cce54093527ce8cfc3503dc0ec8bdad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17640056&rft_id=info:pmid/&rfr_iscdi=true |