Loading…

Plastic responses in the metabolome and functional traits of maize plants to temperature variations

Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and m...

Full description

Saved in:
Bibliographic Details
Published in:Plant biology (Stuttgart, Germany) Germany), 2016-03, Vol.18 (2), p.249-261
Main Authors: Sun, C. X., Gao, X. X., Li, M. Q., Fu, J. Q., Zhang, Y. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non-polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment.
ISSN:1435-8603
1438-8677
DOI:10.1111/plb.12378