Loading…
Increasing the feasibility of minimally invasive procedures in type A aortic dissections: a framework for segmentation and quantification
Purpose Our goal is to provide precise measurements of the aortic dimensions in case of dissection pathologies. Quantification of surface lengths and aortic radii/diameters together with the visualization of the dissection membrane represents crucial prerequisites for enabling minimally invasive tre...
Saved in:
Published in: | International journal for computer assisted radiology and surgery 2016-02, Vol.11 (2), p.243-252 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Our goal is to provide precise measurements of the aortic dimensions in case of dissection pathologies. Quantification of surface lengths and aortic radii/diameters together with the visualization of the dissection membrane represents crucial prerequisites for enabling minimally invasive treatment of type A dissections, which always also imply the ascending aorta.
Methods
We seek a measure invariant to luminance and contrast for aortic outer wall segmentation. Therefore, we propose a 2D graph-based approach using phase congruency combined with additional features. Phase congruency is extended to 3D by designing a novel conic directional filter and adding a lowpass component to the 3D Log-Gabor filterbank for extracting the fine dissection membrane, which separates the true lumen from the false one within the aorta.
Results
The result of the outer wall segmentation is compared with manually annotated axial slices belonging to 11 CTA datasets. Quantitative assessment of our novel 2D/3D membrane extraction algorithms has been obtained for 10 datasets and reveals subvoxel accuracy in all cases. Aortic inner and outer surface lengths, determined within 2 cadaveric CT datasets, are validated against manual measurements performed by a vascular surgeon on excised aortas of the body donors.
Conclusions
This contribution proposes a complete pipeline for segmentation and quantification of aortic dissections. Validation against ground truth of the 3D contour lengths quantification represents a significant step toward custom-designed stent-grafts. |
---|---|
ISSN: | 1861-6410 1861-6429 |
DOI: | 10.1007/s11548-015-1283-1 |