Loading…
Nonparametric k-nearest-neighbor entropy estimator
A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situa...
Saved in:
Published in: | Physical review. E 2016-01, Vol.93 (1), p.013310-013310, Article 013310 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063 |
container_end_page | 013310 |
container_issue | 1 |
container_start_page | 013310 |
container_title | Physical review. E |
container_volume | 93 |
creator | Lombardi, Damiano Pant, Sanjay |
description | A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated. |
doi_str_mv | 10.1103/PhysRevE.93.013310 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765117546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765117546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EolXpH-CAeuSSsmvHdn1EVXlIFSAEZ8t1NjTQPLBTpPx7UvVxmtVqZnb1MXaNMEUEcfe27uI7_S2mRkwBhUA4Y0OeakgApDg_zakcsHGM3wCACoxGfskGXM00ohFDxl_qqnHBldSGwk9-kopcoNj2WnytV3WYUNWGuukm_bIoXVuHK3aRu02k8UFH7PNh8TF_Spavj8_z-2XiBYg2yUxKMlNyljqV59po8I5AmhmQ4EJl6J3kXHvh-n-RQMmVUVpCJqWnFJQYsdt9bxPq321_3pZF9LTZuIrqbbSolUTUMt1Z-d7qQx1joNw2oX82dBbB7nDZIy5rhN3j6kM3h_7tqqTsFDnCEf8lG2Yt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765117546</pqid></control><display><type>article</type><title>Nonparametric k-nearest-neighbor entropy estimator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lombardi, Damiano ; Pant, Sanjay</creator><creatorcontrib>Lombardi, Damiano ; Pant, Sanjay</creatorcontrib><description>A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.93.013310</identifier><identifier>PMID: 26871193</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-01, Vol.93 (1), p.013310-013310, Article 013310</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</citedby><cites>FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26871193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><title>Nonparametric k-nearest-neighbor entropy estimator</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EolXpH-CAeuSSsmvHdn1EVXlIFSAEZ8t1NjTQPLBTpPx7UvVxmtVqZnb1MXaNMEUEcfe27uI7_S2mRkwBhUA4Y0OeakgApDg_zakcsHGM3wCACoxGfskGXM00ohFDxl_qqnHBldSGwk9-kopcoNj2WnytV3WYUNWGuukm_bIoXVuHK3aRu02k8UFH7PNh8TF_Spavj8_z-2XiBYg2yUxKMlNyljqV59po8I5AmhmQ4EJl6J3kXHvh-n-RQMmVUVpCJqWnFJQYsdt9bxPq321_3pZF9LTZuIrqbbSolUTUMt1Z-d7qQx1joNw2oX82dBbB7nDZIy5rhN3j6kM3h_7tqqTsFDnCEf8lG2Yt</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Lombardi, Damiano</creator><creator>Pant, Sanjay</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Nonparametric k-nearest-neighbor entropy estimator</title><author>Lombardi, Damiano ; Pant, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lombardi, Damiano</au><au>Pant, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric k-nearest-neighbor entropy estimator</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-01</date><risdate>2016</risdate><volume>93</volume><issue>1</issue><spage>013310</spage><epage>013310</epage><pages>013310-013310</pages><artnum>013310</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.</abstract><cop>United States</cop><pmid>26871193</pmid><doi>10.1103/PhysRevE.93.013310</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2016-01, Vol.93 (1), p.013310-013310, Article 013310 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765117546 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Nonparametric k-nearest-neighbor entropy estimator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20k-nearest-neighbor%20entropy%20estimator&rft.jtitle=Physical%20review.%20E&rft.au=Lombardi,%20Damiano&rft.date=2016-01&rft.volume=93&rft.issue=1&rft.spage=013310&rft.epage=013310&rft.pages=013310-013310&rft.artnum=013310&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.93.013310&rft_dat=%3Cproquest_cross%3E1765117546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765117546&rft_id=info:pmid/26871193&rfr_iscdi=true |