Loading…

Nonparametric k-nearest-neighbor entropy estimator

A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situa...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2016-01, Vol.93 (1), p.013310-013310, Article 013310
Main Authors: Lombardi, Damiano, Pant, Sanjay
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063
cites cdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063
container_end_page 013310
container_issue 1
container_start_page 013310
container_title Physical review. E
container_volume 93
creator Lombardi, Damiano
Pant, Sanjay
description A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.
doi_str_mv 10.1103/PhysRevE.93.013310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765117546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765117546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EolXpH-CAeuSSsmvHdn1EVXlIFSAEZ8t1NjTQPLBTpPx7UvVxmtVqZnb1MXaNMEUEcfe27uI7_S2mRkwBhUA4Y0OeakgApDg_zakcsHGM3wCACoxGfskGXM00ohFDxl_qqnHBldSGwk9-kopcoNj2WnytV3WYUNWGuukm_bIoXVuHK3aRu02k8UFH7PNh8TF_Spavj8_z-2XiBYg2yUxKMlNyljqV59po8I5AmhmQ4EJl6J3kXHvh-n-RQMmVUVpCJqWnFJQYsdt9bxPq321_3pZF9LTZuIrqbbSolUTUMt1Z-d7qQx1joNw2oX82dBbB7nDZIy5rhN3j6kM3h_7tqqTsFDnCEf8lG2Yt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765117546</pqid></control><display><type>article</type><title>Nonparametric k-nearest-neighbor entropy estimator</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lombardi, Damiano ; Pant, Sanjay</creator><creatorcontrib>Lombardi, Damiano ; Pant, Sanjay</creatorcontrib><description>A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.93.013310</identifier><identifier>PMID: 26871193</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-01, Vol.93 (1), p.013310-013310, Article 013310</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</citedby><cites>FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26871193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><title>Nonparametric k-nearest-neighbor entropy estimator</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EolXpH-CAeuSSsmvHdn1EVXlIFSAEZ8t1NjTQPLBTpPx7UvVxmtVqZnb1MXaNMEUEcfe27uI7_S2mRkwBhUA4Y0OeakgApDg_zakcsHGM3wCACoxGfskGXM00ohFDxl_qqnHBldSGwk9-kopcoNj2WnytV3WYUNWGuukm_bIoXVuHK3aRu02k8UFH7PNh8TF_Spavj8_z-2XiBYg2yUxKMlNyljqV59po8I5AmhmQ4EJl6J3kXHvh-n-RQMmVUVpCJqWnFJQYsdt9bxPq321_3pZF9LTZuIrqbbSolUTUMt1Z-d7qQx1joNw2oX82dBbB7nDZIy5rhN3j6kM3h_7tqqTsFDnCEf8lG2Yt</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Lombardi, Damiano</creator><creator>Pant, Sanjay</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Nonparametric k-nearest-neighbor entropy estimator</title><author>Lombardi, Damiano ; Pant, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lombardi, Damiano</creatorcontrib><creatorcontrib>Pant, Sanjay</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lombardi, Damiano</au><au>Pant, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric k-nearest-neighbor entropy estimator</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-01</date><risdate>2016</risdate><volume>93</volume><issue>1</issue><spage>013310</spage><epage>013310</epage><pages>013310-013310</pages><artnum>013310</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator, and a significant improvement is demonstrated.</abstract><cop>United States</cop><pmid>26871193</pmid><doi>10.1103/PhysRevE.93.013310</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2016-01, Vol.93 (1), p.013310-013310, Article 013310
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1765117546
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Nonparametric k-nearest-neighbor entropy estimator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20k-nearest-neighbor%20entropy%20estimator&rft.jtitle=Physical%20review.%20E&rft.au=Lombardi,%20Damiano&rft.date=2016-01&rft.volume=93&rft.issue=1&rft.spage=013310&rft.epage=013310&rft.pages=013310-013310&rft.artnum=013310&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.93.013310&rft_dat=%3Cproquest_cross%3E1765117546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-d94e5d6584a6ff7970cae05980e3236d1ca5227c3a0531e065b96750d55ce4063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765117546&rft_id=info:pmid/26871193&rfr_iscdi=true