Loading…
Analytical models of stationary nonlinear gravitational waves
Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative...
Saved in:
Published in: | Water resources 2016, Vol.43 (1), p.86-94 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433 |
container_end_page | 94 |
container_issue | 1 |
container_start_page | 86 |
container_title | Water resources |
container_volume | 43 |
creator | Kistovich, A. V. Chashechkin, Yu. D. |
description | Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed. |
doi_str_mv | 10.1134/S0097807816120083 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765976729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765976729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433</originalsourceid><addsrcrecordid>eNp1kEtLA0EQhAdRMEZ_gLcFL15Wu3c28zh4CMEXBDyo4G2ZzPaGDZOdOLNR8u-dmBxE8dSH-qqoLsbOEa4QeXn9DKClAqlQYAGg-AEboACV87J8O2SDrZxv9WN2EuMCABOkB-xm3Bm36VtrXLb0NbmY-SaLvelb35mwyTrfubYjE7J5MB_tXnDZp_mgeMqOGuMine3vkL3e3b5MHvLp0_3jZDzNLQfsUwelFJ8JpbksDdaiHllJNVEBRBxsjVpjnVjJhdWoIT0xa1QtJCGYkvMhu9zlroJ_X1Psq2UbLTlnOvLrWKEUIy2FLHRCL36hC78OqfE3BcVICSEShTvKBh9joKZahXaZ_q0Qqu2g1Z9Bk6fYeWJiuzmFH8n_mr4AJtd2Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760258666</pqid></control><display><type>article</type><title>Analytical models of stationary nonlinear gravitational waves</title><source>Springer Link</source><creator>Kistovich, A. V. ; Chashechkin, Yu. D.</creator><creatorcontrib>Kistovich, A. V. ; Chashechkin, Yu. D.</creatorcontrib><description>Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.</description><identifier>ISSN: 0097-8078</identifier><identifier>EISSN: 1608-344X</identifier><identifier>DOI: 10.1134/S0097807816120083</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aquatic Pollution ; Boundary conditions ; Deep water ; Differential equations ; Earth and Environmental Science ; Earth Sciences ; Fluid mechanics ; Gravity waves ; Hydrogeology ; Hydrology/Water Resources ; Hydrophysical Processes ; Mathematical models ; Surface waves ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Water resources, 2016, Vol.43 (1), p.86-94</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><title>Analytical models of stationary nonlinear gravitational waves</title><title>Water resources</title><addtitle>Water Resour</addtitle><description>Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.</description><subject>Aquatic Pollution</subject><subject>Boundary conditions</subject><subject>Deep water</subject><subject>Differential equations</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid mechanics</subject><subject>Gravity waves</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Hydrophysical Processes</subject><subject>Mathematical models</subject><subject>Surface waves</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0097-8078</issn><issn>1608-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLA0EQhAdRMEZ_gLcFL15Wu3c28zh4CMEXBDyo4G2ZzPaGDZOdOLNR8u-dmBxE8dSH-qqoLsbOEa4QeXn9DKClAqlQYAGg-AEboACV87J8O2SDrZxv9WN2EuMCABOkB-xm3Bm36VtrXLb0NbmY-SaLvelb35mwyTrfubYjE7J5MB_tXnDZp_mgeMqOGuMine3vkL3e3b5MHvLp0_3jZDzNLQfsUwelFJ8JpbksDdaiHllJNVEBRBxsjVpjnVjJhdWoIT0xa1QtJCGYkvMhu9zlroJ_X1Psq2UbLTlnOvLrWKEUIy2FLHRCL36hC78OqfE3BcVICSEShTvKBh9joKZahXaZ_q0Qqu2g1Z9Bk6fYeWJiuzmFH8n_mr4AJtd2Ow</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Kistovich, A. V.</creator><creator>Chashechkin, Yu. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2016</creationdate><title>Analytical models of stationary nonlinear gravitational waves</title><author>Kistovich, A. V. ; Chashechkin, Yu. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aquatic Pollution</topic><topic>Boundary conditions</topic><topic>Deep water</topic><topic>Differential equations</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid mechanics</topic><topic>Gravity waves</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Hydrophysical Processes</topic><topic>Mathematical models</topic><topic>Surface waves</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kistovich, A. V.</au><au>Chashechkin, Yu. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical models of stationary nonlinear gravitational waves</atitle><jtitle>Water resources</jtitle><stitle>Water Resour</stitle><date>2016</date><risdate>2016</risdate><volume>43</volume><issue>1</issue><spage>86</spage><epage>94</epage><pages>86-94</pages><issn>0097-8078</issn><eissn>1608-344X</eissn><abstract>Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0097807816120083</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-8078 |
ispartof | Water resources, 2016, Vol.43 (1), p.86-94 |
issn | 0097-8078 1608-344X |
language | eng |
recordid | cdi_proquest_miscellaneous_1765976729 |
source | Springer Link |
subjects | Aquatic Pollution Boundary conditions Deep water Differential equations Earth and Environmental Science Earth Sciences Fluid mechanics Gravity waves Hydrogeology Hydrology/Water Resources Hydrophysical Processes Mathematical models Surface waves Waste Water Technology Water Management Water Pollution Control |
title | Analytical models of stationary nonlinear gravitational waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20models%20of%20stationary%20nonlinear%20gravitational%20waves&rft.jtitle=Water%20resources&rft.au=Kistovich,%20A.%20V.&rft.date=2016&rft.volume=43&rft.issue=1&rft.spage=86&rft.epage=94&rft.pages=86-94&rft.issn=0097-8078&rft.eissn=1608-344X&rft_id=info:doi/10.1134/S0097807816120083&rft_dat=%3Cproquest_cross%3E1765976729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760258666&rft_id=info:pmid/&rfr_iscdi=true |