Loading…

Analytical models of stationary nonlinear gravitational waves

Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative...

Full description

Saved in:
Bibliographic Details
Published in:Water resources 2016, Vol.43 (1), p.86-94
Main Authors: Kistovich, A. V., Chashechkin, Yu. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433
container_end_page 94
container_issue 1
container_start_page 86
container_title Water resources
container_volume 43
creator Kistovich, A. V.
Chashechkin, Yu. D.
description Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.
doi_str_mv 10.1134/S0097807816120083
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765976729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765976729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433</originalsourceid><addsrcrecordid>eNp1kEtLA0EQhAdRMEZ_gLcFL15Wu3c28zh4CMEXBDyo4G2ZzPaGDZOdOLNR8u-dmBxE8dSH-qqoLsbOEa4QeXn9DKClAqlQYAGg-AEboACV87J8O2SDrZxv9WN2EuMCABOkB-xm3Bm36VtrXLb0NbmY-SaLvelb35mwyTrfubYjE7J5MB_tXnDZp_mgeMqOGuMine3vkL3e3b5MHvLp0_3jZDzNLQfsUwelFJ8JpbksDdaiHllJNVEBRBxsjVpjnVjJhdWoIT0xa1QtJCGYkvMhu9zlroJ_X1Psq2UbLTlnOvLrWKEUIy2FLHRCL36hC78OqfE3BcVICSEShTvKBh9joKZahXaZ_q0Qqu2g1Z9Bk6fYeWJiuzmFH8n_mr4AJtd2Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760258666</pqid></control><display><type>article</type><title>Analytical models of stationary nonlinear gravitational waves</title><source>Springer Link</source><creator>Kistovich, A. V. ; Chashechkin, Yu. D.</creator><creatorcontrib>Kistovich, A. V. ; Chashechkin, Yu. D.</creatorcontrib><description>Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.</description><identifier>ISSN: 0097-8078</identifier><identifier>EISSN: 1608-344X</identifier><identifier>DOI: 10.1134/S0097807816120083</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aquatic Pollution ; Boundary conditions ; Deep water ; Differential equations ; Earth and Environmental Science ; Earth Sciences ; Fluid mechanics ; Gravity waves ; Hydrogeology ; Hydrology/Water Resources ; Hydrophysical Processes ; Mathematical models ; Surface waves ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Water resources, 2016, Vol.43 (1), p.86-94</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><title>Analytical models of stationary nonlinear gravitational waves</title><title>Water resources</title><addtitle>Water Resour</addtitle><description>Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.</description><subject>Aquatic Pollution</subject><subject>Boundary conditions</subject><subject>Deep water</subject><subject>Differential equations</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid mechanics</subject><subject>Gravity waves</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Hydrophysical Processes</subject><subject>Mathematical models</subject><subject>Surface waves</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0097-8078</issn><issn>1608-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLA0EQhAdRMEZ_gLcFL15Wu3c28zh4CMEXBDyo4G2ZzPaGDZOdOLNR8u-dmBxE8dSH-qqoLsbOEa4QeXn9DKClAqlQYAGg-AEboACV87J8O2SDrZxv9WN2EuMCABOkB-xm3Bm36VtrXLb0NbmY-SaLvelb35mwyTrfubYjE7J5MB_tXnDZp_mgeMqOGuMine3vkL3e3b5MHvLp0_3jZDzNLQfsUwelFJ8JpbksDdaiHllJNVEBRBxsjVpjnVjJhdWoIT0xa1QtJCGYkvMhu9zlroJ_X1Psq2UbLTlnOvLrWKEUIy2FLHRCL36hC78OqfE3BcVICSEShTvKBh9joKZahXaZ_q0Qqu2g1Z9Bk6fYeWJiuzmFH8n_mr4AJtd2Ow</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Kistovich, A. V.</creator><creator>Chashechkin, Yu. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2016</creationdate><title>Analytical models of stationary nonlinear gravitational waves</title><author>Kistovich, A. V. ; Chashechkin, Yu. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aquatic Pollution</topic><topic>Boundary conditions</topic><topic>Deep water</topic><topic>Differential equations</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid mechanics</topic><topic>Gravity waves</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Hydrophysical Processes</topic><topic>Mathematical models</topic><topic>Surface waves</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kistovich, A. V.</creatorcontrib><creatorcontrib>Chashechkin, Yu. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kistovich, A. V.</au><au>Chashechkin, Yu. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical models of stationary nonlinear gravitational waves</atitle><jtitle>Water resources</jtitle><stitle>Water Resour</stitle><date>2016</date><risdate>2016</risdate><volume>43</volume><issue>1</issue><spage>86</spage><epage>94</epage><pages>86-94</pages><issn>0097-8078</issn><eissn>1608-344X</eissn><abstract>Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0097807816120083</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-8078
ispartof Water resources, 2016, Vol.43 (1), p.86-94
issn 0097-8078
1608-344X
language eng
recordid cdi_proquest_miscellaneous_1765976729
source Springer Link
subjects Aquatic Pollution
Boundary conditions
Deep water
Differential equations
Earth and Environmental Science
Earth Sciences
Fluid mechanics
Gravity waves
Hydrogeology
Hydrology/Water Resources
Hydrophysical Processes
Mathematical models
Surface waves
Waste Water Technology
Water Management
Water Pollution Control
title Analytical models of stationary nonlinear gravitational waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20models%20of%20stationary%20nonlinear%20gravitational%20waves&rft.jtitle=Water%20resources&rft.au=Kistovich,%20A.%20V.&rft.date=2016&rft.volume=43&rft.issue=1&rft.spage=86&rft.epage=94&rft.pages=86-94&rft.issn=0097-8078&rft.eissn=1608-344X&rft_id=info:doi/10.1134/S0097807816120083&rft_dat=%3Cproquest_cross%3E1765976729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-348883b689374a1d6d5c7edee20ee30cd1991dc30736c9190161bf8d67e10a433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760258666&rft_id=info:pmid/&rfr_iscdi=true