Loading…
Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony
Reproductive phenology is a crucial life-history trait that is influenced by both environmental and frequency-dependent effects. The fitness benefits of any phenology strategy will depend strongly on other aspects of the life history: one of the most fundamental ways life histories can differ is fer...
Saved in:
Published in: | Marine ecology. Progress series (Halstenbek) 2015-10, Vol.537, p.23-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3 |
container_end_page | 38 |
container_issue | |
container_start_page | 23 |
container_title | Marine ecology. Progress series (Halstenbek) |
container_volume | 537 |
creator | Olito, Colin Bode, Michael Marshall, Dustin |
description | Reproductive phenology is a crucial life-history trait that is influenced by both environmental and frequency-dependent effects. The fitness benefits of any phenology strategy will depend strongly on other aspects of the life history: one of the most fundamental ways life histories can differ is fertilization mode. Despite the strong potential for fertilization mode to alter selection on phenology, explorations into how these 2 fundamental life-history traits interact are lacking. We explore theoretically how frequency-dependent effects and fertilization mode influence the evolution of asynchronous reproduction, and the evolutionary stable strategy (ESS) for a population in which individuals’ mean and variance in phenology are evolvable traits. We find that when males compete for fertilizations, perfect reproductive synchrony with optimal environmental conditions is never an optimal evolutionary strategy, and asynchronous reproduction is an inevitable consequence of frequency-dependent selection. Fertilization mode qualitatively alters frequency-dependent selection on the variance in phenology, as well as the prevalence of sexual conflict over reproductive timing. Our results contrast with traditional hypotheses that have primarily considered asynchronous reproduction as an adaptive bet-hedging strategy in stochastic environments, and provide a much-needed explanation for the emerging picture of reproductive asynchrony observed in many systems. |
doi_str_mv | 10.3354/meps11453 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765992273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24895987</jstor_id><sourcerecordid>24895987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6rB3-AkKMeqpkkTZqjLOsHLHjRg6cS04nbpW3WpF2ov94uK3saGB6Gd15CroHdC5HLhxa3CUDm4oTMQIHKIDfmlMwYaMgKJdg5uUhpwxgoqdWMfC53oRn6OnQ2jtSFLuHPgJ3DRIOnHmNfN_Wv3QPahgqpD5FG3MZQDa6vd0i3a-xCE75HaruK2jR2bh1DN16SM2-bhFf_c04-npbvi5ds9fb8unhcZY4Xss-854wLA9x_AXOyYN4zC1bnTNjKaYRcegXgjJfTXjptOM_RKKEq9OArMSe3h7tTpil66su2Tg6bxnYYhlSCVlMFnGsx0bsDdTGkFNGX21i30-MlsHJfX3msb7I3B7tJfYhHyGVhclNo8QfFS27o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765992273</pqid></control><display><type>article</type><title>Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Olito, Colin ; Bode, Michael ; Marshall, Dustin</creator><creatorcontrib>Olito, Colin ; Bode, Michael ; Marshall, Dustin</creatorcontrib><description>Reproductive phenology is a crucial life-history trait that is influenced by both environmental and frequency-dependent effects. The fitness benefits of any phenology strategy will depend strongly on other aspects of the life history: one of the most fundamental ways life histories can differ is fertilization mode. Despite the strong potential for fertilization mode to alter selection on phenology, explorations into how these 2 fundamental life-history traits interact are lacking. We explore theoretically how frequency-dependent effects and fertilization mode influence the evolution of asynchronous reproduction, and the evolutionary stable strategy (ESS) for a population in which individuals’ mean and variance in phenology are evolvable traits. We find that when males compete for fertilizations, perfect reproductive synchrony with optimal environmental conditions is never an optimal evolutionary strategy, and asynchronous reproduction is an inevitable consequence of frequency-dependent selection. Fertilization mode qualitatively alters frequency-dependent selection on the variance in phenology, as well as the prevalence of sexual conflict over reproductive timing. Our results contrast with traditional hypotheses that have primarily considered asynchronous reproduction as an adaptive bet-hedging strategy in stochastic environments, and provide a much-needed explanation for the emerging picture of reproductive asynchrony observed in many systems.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps11453</identifier><language>eng</language><publisher>Inter-Research</publisher><subject>Marine</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2015-10, Vol.537, p.23-38</ispartof><rights>Inter-Research 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3</citedby><cites>FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24895987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24895987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Olito, Colin</creatorcontrib><creatorcontrib>Bode, Michael</creatorcontrib><creatorcontrib>Marshall, Dustin</creatorcontrib><title>Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony</title><title>Marine ecology. Progress series (Halstenbek)</title><description>Reproductive phenology is a crucial life-history trait that is influenced by both environmental and frequency-dependent effects. The fitness benefits of any phenology strategy will depend strongly on other aspects of the life history: one of the most fundamental ways life histories can differ is fertilization mode. Despite the strong potential for fertilization mode to alter selection on phenology, explorations into how these 2 fundamental life-history traits interact are lacking. We explore theoretically how frequency-dependent effects and fertilization mode influence the evolution of asynchronous reproduction, and the evolutionary stable strategy (ESS) for a population in which individuals’ mean and variance in phenology are evolvable traits. We find that when males compete for fertilizations, perfect reproductive synchrony with optimal environmental conditions is never an optimal evolutionary strategy, and asynchronous reproduction is an inevitable consequence of frequency-dependent selection. Fertilization mode qualitatively alters frequency-dependent selection on the variance in phenology, as well as the prevalence of sexual conflict over reproductive timing. Our results contrast with traditional hypotheses that have primarily considered asynchronous reproduction as an adaptive bet-hedging strategy in stochastic environments, and provide a much-needed explanation for the emerging picture of reproductive asynchrony observed in many systems.</description><subject>Marine</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6rB3-AkKMeqpkkTZqjLOsHLHjRg6cS04nbpW3WpF2ov94uK3saGB6Gd15CroHdC5HLhxa3CUDm4oTMQIHKIDfmlMwYaMgKJdg5uUhpwxgoqdWMfC53oRn6OnQ2jtSFLuHPgJ3DRIOnHmNfN_Wv3QPahgqpD5FG3MZQDa6vd0i3a-xCE75HaruK2jR2bh1DN16SM2-bhFf_c04-npbvi5ds9fb8unhcZY4Xss-854wLA9x_AXOyYN4zC1bnTNjKaYRcegXgjJfTXjptOM_RKKEq9OArMSe3h7tTpil66su2Tg6bxnYYhlSCVlMFnGsx0bsDdTGkFNGX21i30-MlsHJfX3msb7I3B7tJfYhHyGVhclNo8QfFS27o</recordid><startdate>20151014</startdate><enddate>20151014</enddate><creator>Olito, Colin</creator><creator>Bode, Michael</creator><creator>Marshall, Dustin</creator><general>Inter-Research</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20151014</creationdate><title>Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony</title><author>Olito, Colin ; Bode, Michael ; Marshall, Dustin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olito, Colin</creatorcontrib><creatorcontrib>Bode, Michael</creatorcontrib><creatorcontrib>Marshall, Dustin</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olito, Colin</au><au>Bode, Michael</au><au>Marshall, Dustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2015-10-14</date><risdate>2015</risdate><volume>537</volume><spage>23</spage><epage>38</epage><pages>23-38</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>Reproductive phenology is a crucial life-history trait that is influenced by both environmental and frequency-dependent effects. The fitness benefits of any phenology strategy will depend strongly on other aspects of the life history: one of the most fundamental ways life histories can differ is fertilization mode. Despite the strong potential for fertilization mode to alter selection on phenology, explorations into how these 2 fundamental life-history traits interact are lacking. We explore theoretically how frequency-dependent effects and fertilization mode influence the evolution of asynchronous reproduction, and the evolutionary stable strategy (ESS) for a population in which individuals’ mean and variance in phenology are evolvable traits. We find that when males compete for fertilizations, perfect reproductive synchrony with optimal environmental conditions is never an optimal evolutionary strategy, and asynchronous reproduction is an inevitable consequence of frequency-dependent selection. Fertilization mode qualitatively alters frequency-dependent selection on the variance in phenology, as well as the prevalence of sexual conflict over reproductive timing. Our results contrast with traditional hypotheses that have primarily considered asynchronous reproduction as an adaptive bet-hedging strategy in stochastic environments, and provide a much-needed explanation for the emerging picture of reproductive asynchrony observed in many systems.</abstract><pub>Inter-Research</pub><doi>10.3354/meps11453</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-8630 |
ispartof | Marine ecology. Progress series (Halstenbek), 2015-10, Vol.537, p.23-38 |
issn | 0171-8630 1616-1599 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765992273 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Marine |
title | Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20consequences%20of%20fertilization%20mode%20for%20reproductive%20phenology%20and%20asynchrony&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=Olito,%20Colin&rft.date=2015-10-14&rft.volume=537&rft.spage=23&rft.epage=38&rft.pages=23-38&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps11453&rft_dat=%3Cjstor_proqu%3E24895987%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-ff2023912fb10c480ff0a1a7503adc7e154f611c9f40a14c79225e9636def1fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765992273&rft_id=info:pmid/&rft_jstor_id=24895987&rfr_iscdi=true |