Loading…
A comparative investigation of methods for longitudinal data with limits of detection through a case study
The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This arti...
Saved in:
Published in: | Statistical methods in medical research 2016-02, Vol.25 (1), p.153-166 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33 |
container_end_page | 166 |
container_issue | 1 |
container_start_page | 153 |
container_title | Statistical methods in medical research |
container_volume | 25 |
creator | Fu, P Hughes, J Zeng, G Hanook, S Orem, J Mwanda, OW Remick, SC |
description | The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism. |
doi_str_mv | 10.1177/0962280212444800 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1766266811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280212444800</sage_id><sourcerecordid>1878495423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</originalsourceid><addsrcrecordid>eNp1kUlLBDEQhYMoOi53TxLw4qW1skzSfRRxA8GLnptMlpkM3Z0xSSv-ezOOigieiqK-94pXhdAxgXNCpLyARlBaAyWUc14DbKEJ4VJWwBjfRpP1uFrP99B-SksAkMCbXbRH6RQ4ZWSClpdYh36losr-1WI_vNqU_bx0YcDB4d7mRTAJuxBxF4a5z6Pxg-qwUVnhN58XuPO9z2kNG5ut_lTmRQzjfIEV1ipZnIrq_RDtONUle_RVD9DzzfXT1V318Hh7f3X5UGkmprkStXOGGzpjUlpgyknFmAZphHCm4UIzyjgDxZlrnNBU2WkDM0WFJZywGWMH6Gzju4rhZSxx2t4nbbtODTaMqSVSCCpETUhBT_-gyzDGEq9Qtax5My1XKhRsKB1DStG6dhV9r-J7S6Bd_6H9-4ciOfkyHme9NT-C78MXoNoASc3tr63_GX4A8mSPlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878495423</pqid></control><display><type>article</type><title>A comparative investigation of methods for longitudinal data with limits of detection through a case study</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE</source><creator>Fu, P ; Hughes, J ; Zeng, G ; Hanook, S ; Orem, J ; Mwanda, OW ; Remick, SC</creator><creatorcontrib>Fu, P ; Hughes, J ; Zeng, G ; Hanook, S ; Orem, J ; Mwanda, OW ; Remick, SC</creatorcontrib><description>The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280212444800</identifier><identifier>PMID: 22504231</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Algorithms ; Antiretroviral drugs ; Antiretroviral therapy ; Bias ; Biostatistics ; Chemotherapy ; Clinical Trials as Topic ; Computer Simulation ; Data analysis ; Data Interpretation, Statistical ; Economic models ; HIV ; HIV-1 ; Human immunodeficiency virus ; Humans ; Limit of Detection ; Linear Models ; Longitudinal Studies ; Lymphoma ; Lymphoma, AIDS-Related - drug therapy ; Lymphoma, AIDS-Related - virology ; Lymphoma, Non-Hodgkin - drug therapy ; Lymphoma, Non-Hodgkin - virology ; Maximum likelihood estimation ; Maximum likelihood method ; Measurement ; Models, Statistical ; Monte Carlo Method ; Monte Carlo simulation ; Multiple imputation ; Natural history ; Parameter sensitivity ; RNA, Viral - blood ; Simulation ; Statistical analysis ; Viral Load - drug effects</subject><ispartof>Statistical methods in medical research, 2016-02, Vol.25 (1), p.153-166</ispartof><rights>The Author(s) 2012</rights><rights>The Author(s) 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</citedby><cites>FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,30980,79113</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22504231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, P</creatorcontrib><creatorcontrib>Hughes, J</creatorcontrib><creatorcontrib>Zeng, G</creatorcontrib><creatorcontrib>Hanook, S</creatorcontrib><creatorcontrib>Orem, J</creatorcontrib><creatorcontrib>Mwanda, OW</creatorcontrib><creatorcontrib>Remick, SC</creatorcontrib><title>A comparative investigation of methods for longitudinal data with limits of detection through a case study</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Algorithms</subject><subject>Antiretroviral drugs</subject><subject>Antiretroviral therapy</subject><subject>Bias</subject><subject>Biostatistics</subject><subject>Chemotherapy</subject><subject>Clinical Trials as Topic</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Economic models</subject><subject>HIV</subject><subject>HIV-1</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Linear Models</subject><subject>Longitudinal Studies</subject><subject>Lymphoma</subject><subject>Lymphoma, AIDS-Related - drug therapy</subject><subject>Lymphoma, AIDS-Related - virology</subject><subject>Lymphoma, Non-Hodgkin - drug therapy</subject><subject>Lymphoma, Non-Hodgkin - virology</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Measurement</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multiple imputation</subject><subject>Natural history</subject><subject>Parameter sensitivity</subject><subject>RNA, Viral - blood</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Viral Load - drug effects</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kUlLBDEQhYMoOi53TxLw4qW1skzSfRRxA8GLnptMlpkM3Z0xSSv-ezOOigieiqK-94pXhdAxgXNCpLyARlBaAyWUc14DbKEJ4VJWwBjfRpP1uFrP99B-SksAkMCbXbRH6RQ4ZWSClpdYh36losr-1WI_vNqU_bx0YcDB4d7mRTAJuxBxF4a5z6Pxg-qwUVnhN58XuPO9z2kNG5ut_lTmRQzjfIEV1ipZnIrq_RDtONUle_RVD9DzzfXT1V318Hh7f3X5UGkmprkStXOGGzpjUlpgyknFmAZphHCm4UIzyjgDxZlrnNBU2WkDM0WFJZywGWMH6Gzju4rhZSxx2t4nbbtODTaMqSVSCCpETUhBT_-gyzDGEq9Qtax5My1XKhRsKB1DStG6dhV9r-J7S6Bd_6H9-4ciOfkyHme9NT-C78MXoNoASc3tr63_GX4A8mSPlg</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Fu, P</creator><creator>Hughes, J</creator><creator>Zeng, G</creator><creator>Hanook, S</creator><creator>Orem, J</creator><creator>Mwanda, OW</creator><creator>Remick, SC</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201602</creationdate><title>A comparative investigation of methods for longitudinal data with limits of detection through a case study</title><author>Fu, P ; Hughes, J ; Zeng, G ; Hanook, S ; Orem, J ; Mwanda, OW ; Remick, SC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Algorithms</topic><topic>Antiretroviral drugs</topic><topic>Antiretroviral therapy</topic><topic>Bias</topic><topic>Biostatistics</topic><topic>Chemotherapy</topic><topic>Clinical Trials as Topic</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Economic models</topic><topic>HIV</topic><topic>HIV-1</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Linear Models</topic><topic>Longitudinal Studies</topic><topic>Lymphoma</topic><topic>Lymphoma, AIDS-Related - drug therapy</topic><topic>Lymphoma, AIDS-Related - virology</topic><topic>Lymphoma, Non-Hodgkin - drug therapy</topic><topic>Lymphoma, Non-Hodgkin - virology</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Measurement</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multiple imputation</topic><topic>Natural history</topic><topic>Parameter sensitivity</topic><topic>RNA, Viral - blood</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Viral Load - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, P</creatorcontrib><creatorcontrib>Hughes, J</creatorcontrib><creatorcontrib>Zeng, G</creatorcontrib><creatorcontrib>Hanook, S</creatorcontrib><creatorcontrib>Orem, J</creatorcontrib><creatorcontrib>Mwanda, OW</creatorcontrib><creatorcontrib>Remick, SC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, P</au><au>Hughes, J</au><au>Zeng, G</au><au>Hanook, S</au><au>Orem, J</au><au>Mwanda, OW</au><au>Remick, SC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative investigation of methods for longitudinal data with limits of detection through a case study</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2016-02</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>153</spage><epage>166</epage><pages>153-166</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>22504231</pmid><doi>10.1177/0962280212444800</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2016-02, Vol.25 (1), p.153-166 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_1766266811 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE |
subjects | Acquired immune deficiency syndrome AIDS Algorithms Antiretroviral drugs Antiretroviral therapy Bias Biostatistics Chemotherapy Clinical Trials as Topic Computer Simulation Data analysis Data Interpretation, Statistical Economic models HIV HIV-1 Human immunodeficiency virus Humans Limit of Detection Linear Models Longitudinal Studies Lymphoma Lymphoma, AIDS-Related - drug therapy Lymphoma, AIDS-Related - virology Lymphoma, Non-Hodgkin - drug therapy Lymphoma, Non-Hodgkin - virology Maximum likelihood estimation Maximum likelihood method Measurement Models, Statistical Monte Carlo Method Monte Carlo simulation Multiple imputation Natural history Parameter sensitivity RNA, Viral - blood Simulation Statistical analysis Viral Load - drug effects |
title | A comparative investigation of methods for longitudinal data with limits of detection through a case study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20investigation%20of%20methods%20for%20longitudinal%20data%20with%20limits%20of%20detection%20through%20a%20case%20study&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Fu,%20P&rft.date=2016-02&rft.volume=25&rft.issue=1&rft.spage=153&rft.epage=166&rft.pages=153-166&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280212444800&rft_dat=%3Cproquest_cross%3E1878495423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878495423&rft_id=info:pmid/22504231&rft_sage_id=10.1177_0962280212444800&rfr_iscdi=true |