Loading…

A comparative investigation of methods for longitudinal data with limits of detection through a case study

The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This arti...

Full description

Saved in:
Bibliographic Details
Published in:Statistical methods in medical research 2016-02, Vol.25 (1), p.153-166
Main Authors: Fu, P, Hughes, J, Zeng, G, Hanook, S, Orem, J, Mwanda, OW, Remick, SC
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33
cites cdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33
container_end_page 166
container_issue 1
container_start_page 153
container_title Statistical methods in medical research
container_volume 25
creator Fu, P
Hughes, J
Zeng, G
Hanook, S
Orem, J
Mwanda, OW
Remick, SC
description The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.
doi_str_mv 10.1177/0962280212444800
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1766266811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280212444800</sage_id><sourcerecordid>1878495423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</originalsourceid><addsrcrecordid>eNp1kUlLBDEQhYMoOi53TxLw4qW1skzSfRRxA8GLnptMlpkM3Z0xSSv-ezOOigieiqK-94pXhdAxgXNCpLyARlBaAyWUc14DbKEJ4VJWwBjfRpP1uFrP99B-SksAkMCbXbRH6RQ4ZWSClpdYh36losr-1WI_vNqU_bx0YcDB4d7mRTAJuxBxF4a5z6Pxg-qwUVnhN58XuPO9z2kNG5ut_lTmRQzjfIEV1ipZnIrq_RDtONUle_RVD9DzzfXT1V318Hh7f3X5UGkmprkStXOGGzpjUlpgyknFmAZphHCm4UIzyjgDxZlrnNBU2WkDM0WFJZywGWMH6Gzju4rhZSxx2t4nbbtODTaMqSVSCCpETUhBT_-gyzDGEq9Qtax5My1XKhRsKB1DStG6dhV9r-J7S6Bd_6H9-4ciOfkyHme9NT-C78MXoNoASc3tr63_GX4A8mSPlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878495423</pqid></control><display><type>article</type><title>A comparative investigation of methods for longitudinal data with limits of detection through a case study</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE</source><creator>Fu, P ; Hughes, J ; Zeng, G ; Hanook, S ; Orem, J ; Mwanda, OW ; Remick, SC</creator><creatorcontrib>Fu, P ; Hughes, J ; Zeng, G ; Hanook, S ; Orem, J ; Mwanda, OW ; Remick, SC</creatorcontrib><description>The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280212444800</identifier><identifier>PMID: 22504231</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Algorithms ; Antiretroviral drugs ; Antiretroviral therapy ; Bias ; Biostatistics ; Chemotherapy ; Clinical Trials as Topic ; Computer Simulation ; Data analysis ; Data Interpretation, Statistical ; Economic models ; HIV ; HIV-1 ; Human immunodeficiency virus ; Humans ; Limit of Detection ; Linear Models ; Longitudinal Studies ; Lymphoma ; Lymphoma, AIDS-Related - drug therapy ; Lymphoma, AIDS-Related - virology ; Lymphoma, Non-Hodgkin - drug therapy ; Lymphoma, Non-Hodgkin - virology ; Maximum likelihood estimation ; Maximum likelihood method ; Measurement ; Models, Statistical ; Monte Carlo Method ; Monte Carlo simulation ; Multiple imputation ; Natural history ; Parameter sensitivity ; RNA, Viral - blood ; Simulation ; Statistical analysis ; Viral Load - drug effects</subject><ispartof>Statistical methods in medical research, 2016-02, Vol.25 (1), p.153-166</ispartof><rights>The Author(s) 2012</rights><rights>The Author(s) 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</citedby><cites>FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,30980,79113</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22504231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, P</creatorcontrib><creatorcontrib>Hughes, J</creatorcontrib><creatorcontrib>Zeng, G</creatorcontrib><creatorcontrib>Hanook, S</creatorcontrib><creatorcontrib>Orem, J</creatorcontrib><creatorcontrib>Mwanda, OW</creatorcontrib><creatorcontrib>Remick, SC</creatorcontrib><title>A comparative investigation of methods for longitudinal data with limits of detection through a case study</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Algorithms</subject><subject>Antiretroviral drugs</subject><subject>Antiretroviral therapy</subject><subject>Bias</subject><subject>Biostatistics</subject><subject>Chemotherapy</subject><subject>Clinical Trials as Topic</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Economic models</subject><subject>HIV</subject><subject>HIV-1</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Linear Models</subject><subject>Longitudinal Studies</subject><subject>Lymphoma</subject><subject>Lymphoma, AIDS-Related - drug therapy</subject><subject>Lymphoma, AIDS-Related - virology</subject><subject>Lymphoma, Non-Hodgkin - drug therapy</subject><subject>Lymphoma, Non-Hodgkin - virology</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Measurement</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multiple imputation</subject><subject>Natural history</subject><subject>Parameter sensitivity</subject><subject>RNA, Viral - blood</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Viral Load - drug effects</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kUlLBDEQhYMoOi53TxLw4qW1skzSfRRxA8GLnptMlpkM3Z0xSSv-ezOOigieiqK-94pXhdAxgXNCpLyARlBaAyWUc14DbKEJ4VJWwBjfRpP1uFrP99B-SksAkMCbXbRH6RQ4ZWSClpdYh36losr-1WI_vNqU_bx0YcDB4d7mRTAJuxBxF4a5z6Pxg-qwUVnhN58XuPO9z2kNG5ut_lTmRQzjfIEV1ipZnIrq_RDtONUle_RVD9DzzfXT1V318Hh7f3X5UGkmprkStXOGGzpjUlpgyknFmAZphHCm4UIzyjgDxZlrnNBU2WkDM0WFJZywGWMH6Gzju4rhZSxx2t4nbbtODTaMqSVSCCpETUhBT_-gyzDGEq9Qtax5My1XKhRsKB1DStG6dhV9r-J7S6Bd_6H9-4ciOfkyHme9NT-C78MXoNoASc3tr63_GX4A8mSPlg</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Fu, P</creator><creator>Hughes, J</creator><creator>Zeng, G</creator><creator>Hanook, S</creator><creator>Orem, J</creator><creator>Mwanda, OW</creator><creator>Remick, SC</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201602</creationdate><title>A comparative investigation of methods for longitudinal data with limits of detection through a case study</title><author>Fu, P ; Hughes, J ; Zeng, G ; Hanook, S ; Orem, J ; Mwanda, OW ; Remick, SC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Algorithms</topic><topic>Antiretroviral drugs</topic><topic>Antiretroviral therapy</topic><topic>Bias</topic><topic>Biostatistics</topic><topic>Chemotherapy</topic><topic>Clinical Trials as Topic</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Economic models</topic><topic>HIV</topic><topic>HIV-1</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Linear Models</topic><topic>Longitudinal Studies</topic><topic>Lymphoma</topic><topic>Lymphoma, AIDS-Related - drug therapy</topic><topic>Lymphoma, AIDS-Related - virology</topic><topic>Lymphoma, Non-Hodgkin - drug therapy</topic><topic>Lymphoma, Non-Hodgkin - virology</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Measurement</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multiple imputation</topic><topic>Natural history</topic><topic>Parameter sensitivity</topic><topic>RNA, Viral - blood</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Viral Load - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, P</creatorcontrib><creatorcontrib>Hughes, J</creatorcontrib><creatorcontrib>Zeng, G</creatorcontrib><creatorcontrib>Hanook, S</creatorcontrib><creatorcontrib>Orem, J</creatorcontrib><creatorcontrib>Mwanda, OW</creatorcontrib><creatorcontrib>Remick, SC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, P</au><au>Hughes, J</au><au>Zeng, G</au><au>Hanook, S</au><au>Orem, J</au><au>Mwanda, OW</au><au>Remick, SC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative investigation of methods for longitudinal data with limits of detection through a case study</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2016-02</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>153</spage><epage>166</epage><pages>153-166</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>The statistical analysis of continuous longitudinal data may be complicated since quantitative levels of bioassay cannot always be determined. Values beyond the limits of detection (LOD) in the assays may not be observed and thus censored, rendering complexity to the analysis of such data. This article examines how both left-censoring and right censoring of HIV-1 plasma RNA measurements, collected for the study on AIDS-related Non-Hodgkin’s lymphoma (AR-NHL) in East Africa, affects the quantification of viral load and explores the natural history of viral load measurements over time in AR-NHL patients receiving anticancer chemotherapy. Data analyses using Monte Carlo EM algorithm (MCEM) are compared to analyses where the LOD or LOD/2 (left censoring) value is substituted for the censored observations, and also to other methods such as multiple imputation, and maximum likelihood estimation for censored data (generalized Tobit regression). Simulations are used to explore the sensitivity of the results to changes in the model parameters. In conclusion, the antiretroviral treatment was associated with a significant decrease in viral load after controlling the effects of other covariates. A simulation study with finite sample size shows MCEM is the least biased method and the estimates are least sensitive to the censoring mechanism.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>22504231</pmid><doi>10.1177/0962280212444800</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2016-02, Vol.25 (1), p.153-166
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_1766266811
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE
subjects Acquired immune deficiency syndrome
AIDS
Algorithms
Antiretroviral drugs
Antiretroviral therapy
Bias
Biostatistics
Chemotherapy
Clinical Trials as Topic
Computer Simulation
Data analysis
Data Interpretation, Statistical
Economic models
HIV
HIV-1
Human immunodeficiency virus
Humans
Limit of Detection
Linear Models
Longitudinal Studies
Lymphoma
Lymphoma, AIDS-Related - drug therapy
Lymphoma, AIDS-Related - virology
Lymphoma, Non-Hodgkin - drug therapy
Lymphoma, Non-Hodgkin - virology
Maximum likelihood estimation
Maximum likelihood method
Measurement
Models, Statistical
Monte Carlo Method
Monte Carlo simulation
Multiple imputation
Natural history
Parameter sensitivity
RNA, Viral - blood
Simulation
Statistical analysis
Viral Load - drug effects
title A comparative investigation of methods for longitudinal data with limits of detection through a case study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20investigation%20of%20methods%20for%20longitudinal%20data%20with%20limits%20of%20detection%20through%20a%20case%20study&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Fu,%20P&rft.date=2016-02&rft.volume=25&rft.issue=1&rft.spage=153&rft.epage=166&rft.pages=153-166&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280212444800&rft_dat=%3Cproquest_cross%3E1878495423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-68ffd4d2b377e03af7a33c07d66fd946c323430a43f9f6c2ae590ba26e1413b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878495423&rft_id=info:pmid/22504231&rft_sage_id=10.1177_0962280212444800&rfr_iscdi=true