Loading…
Meta-analysis using Dirichlet process
This article develops a Bayesian approach for meta-analysis using the Dirichlet process. The key aspect of the Dirichlet process in meta-analysis is the ability to assess evidence of statistical heterogeneity or variation in the underlying effects across study while relaxing the distributional assum...
Saved in:
Published in: | Statistical methods in medical research 2016-02, Vol.25 (1), p.352-365 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article develops a Bayesian approach for meta-analysis using the Dirichlet process. The key aspect of the Dirichlet process in meta-analysis is the ability to assess evidence of statistical heterogeneity or variation in the underlying effects across study while relaxing the distributional assumptions. We assume that the study effects are generated from a Dirichlet process. Under a Dirichlet process model, the study effects parameters have support on a discrete space and enable borrowing of information across studies while facilitating clustering among studies. We illustrate the proposed method by applying it to a dataset on the Program for International Student Assessment on 30 countries. Results from the data analysis, simulation studies, and the log pseudo-marginal likelihood model selection procedure indicate that the Dirichlet process model performs better than conventional alternative methods. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280212453891 |