Loading…

Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions

Introduction Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. Methods A physiological-based pharmacokinetic (PBPK) model was de...

Full description

Saved in:
Bibliographic Details
Published in:Clinical pharmacokinetics 2016-03, Vol.55 (3), p.369-380
Main Authors: de Kanter, Ruben, Sidharta, Patricia N., Delahaye, Stéphane, Gnerre, Carmela, Segrestaa, Jerome, Buchmann, Stephan, Kohl, Christopher, Treiber, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623
cites cdi_FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623
container_end_page 380
container_issue 3
container_start_page 369
container_title Clinical pharmacokinetics
container_volume 55
creator de Kanter, Ruben
Sidharta, Patricia N.
Delahaye, Stéphane
Gnerre, Carmela
Segrestaa, Jerome
Buchmann, Stephan
Kohl, Christopher
Treiber, Alexander
description Introduction Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. Methods A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. Results The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan–drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. Conclusion This example of the application of PBPK modeling to predict drug–drug interactions was used to support the labeling of macitentan (Opsumit).
doi_str_mv 10.1007/s40262-015-0322-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1767068355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1767068355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623</originalsourceid><addsrcrecordid>eNp1kbFOHDEQhi1EFA6SB6BBK9HQGOyx1_bSASEJEihXJLXl83oPw54N9m6xHe-QN8yT4MsBQpFSjTT_N_-M5kdon5JjSog8yZyAAExojQkDwNMWmlEqG0wbENtoRhgFXDeC7aDdnO8IIQoI-Yh2QDBVK9bMUDu_nbKPfVx6a_p-wucmu7aa35q0Mjbe--AGb6ub2Lreh2UVu-rGWD-4MJhwWs2Ta70dfAxr5Usal3-efq9LdRUGl8xfKX9CHzrTZ_f5pe6hX18vf158x9c_vl1dnF1jyzkMWElgC1CtcVZCI1rGFhasY1ArJ5i01AjZtR3ntV0oCkoQw5vSkqahSgpge-ho4_uQ4uPo8qBXPlvX9ya4OGZNpZBEKFbXBT38B72LYwrlukIpUnMAzgtFN5RNMefkOv2Q_MqkSVOi1xHoTQS6RKDXEeipzBy8OI-LlWvfJl5_XgDYALlIYenSu9X_dX0Gf8WSdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780542244</pqid></control><display><type>article</type><title>Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions</title><source>Springer Link</source><creator>de Kanter, Ruben ; Sidharta, Patricia N. ; Delahaye, Stéphane ; Gnerre, Carmela ; Segrestaa, Jerome ; Buchmann, Stephan ; Kohl, Christopher ; Treiber, Alexander</creator><creatorcontrib>de Kanter, Ruben ; Sidharta, Patricia N. ; Delahaye, Stéphane ; Gnerre, Carmela ; Segrestaa, Jerome ; Buchmann, Stephan ; Kohl, Christopher ; Treiber, Alexander</creatorcontrib><description>Introduction Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. Methods A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. Results The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan–drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. Conclusion This example of the application of PBPK modeling to predict drug–drug interactions was used to support the labeling of macitentan (Opsumit).</description><identifier>ISSN: 0312-5963</identifier><identifier>EISSN: 1179-1926</identifier><identifier>DOI: 10.1007/s40262-015-0322-y</identifier><identifier>PMID: 26385839</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adult ; Cyclosporine - pharmacology ; Cytochrome P-450 CYP3A - metabolism ; Cytochrome P-450 CYP3A Inhibitors - pharmacology ; Drug Interactions ; Endothelin A Receptor Antagonists - pharmacokinetics ; Endothelin B Receptor Antagonists - pharmacokinetics ; Humans ; Internal Medicine ; Ketoconazole - pharmacology ; Male ; Medicine ; Medicine &amp; Public Health ; Models, Biological ; Original Research Article ; Pharmacology/Toxicology ; Pharmacotherapy ; Pyrimidines - blood ; Pyrimidines - pharmacokinetics ; Rifampin - pharmacology ; Sildenafil Citrate - pharmacology ; Sulfonamides - blood ; Sulfonamides - pharmacokinetics ; Warfarin - pharmacology</subject><ispartof>Clinical pharmacokinetics, 2016-03, Vol.55 (3), p.369-380</ispartof><rights>Springer International Publishing Switzerland 2015</rights><rights>Copyright Springer Science &amp; Business Media Mar 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623</citedby><cites>FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623</cites><orcidid>0000-0001-7503-9776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26385839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Kanter, Ruben</creatorcontrib><creatorcontrib>Sidharta, Patricia N.</creatorcontrib><creatorcontrib>Delahaye, Stéphane</creatorcontrib><creatorcontrib>Gnerre, Carmela</creatorcontrib><creatorcontrib>Segrestaa, Jerome</creatorcontrib><creatorcontrib>Buchmann, Stephan</creatorcontrib><creatorcontrib>Kohl, Christopher</creatorcontrib><creatorcontrib>Treiber, Alexander</creatorcontrib><title>Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions</title><title>Clinical pharmacokinetics</title><addtitle>Clin Pharmacokinet</addtitle><addtitle>Clin Pharmacokinet</addtitle><description>Introduction Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. Methods A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. Results The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan–drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. Conclusion This example of the application of PBPK modeling to predict drug–drug interactions was used to support the labeling of macitentan (Opsumit).</description><subject>Adult</subject><subject>Cyclosporine - pharmacology</subject><subject>Cytochrome P-450 CYP3A - metabolism</subject><subject>Cytochrome P-450 CYP3A Inhibitors - pharmacology</subject><subject>Drug Interactions</subject><subject>Endothelin A Receptor Antagonists - pharmacokinetics</subject><subject>Endothelin B Receptor Antagonists - pharmacokinetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Ketoconazole - pharmacology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Biological</subject><subject>Original Research Article</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacotherapy</subject><subject>Pyrimidines - blood</subject><subject>Pyrimidines - pharmacokinetics</subject><subject>Rifampin - pharmacology</subject><subject>Sildenafil Citrate - pharmacology</subject><subject>Sulfonamides - blood</subject><subject>Sulfonamides - pharmacokinetics</subject><subject>Warfarin - pharmacology</subject><issn>0312-5963</issn><issn>1179-1926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kbFOHDEQhi1EFA6SB6BBK9HQGOyx1_bSASEJEihXJLXl83oPw54N9m6xHe-QN8yT4MsBQpFSjTT_N_-M5kdon5JjSog8yZyAAExojQkDwNMWmlEqG0wbENtoRhgFXDeC7aDdnO8IIQoI-Yh2QDBVK9bMUDu_nbKPfVx6a_p-wucmu7aa35q0Mjbe--AGb6ub2Lreh2UVu-rGWD-4MJhwWs2Ta70dfAxr5Usal3-efq9LdRUGl8xfKX9CHzrTZ_f5pe6hX18vf158x9c_vl1dnF1jyzkMWElgC1CtcVZCI1rGFhasY1ArJ5i01AjZtR3ntV0oCkoQw5vSkqahSgpge-ho4_uQ4uPo8qBXPlvX9ya4OGZNpZBEKFbXBT38B72LYwrlukIpUnMAzgtFN5RNMefkOv2Q_MqkSVOi1xHoTQS6RKDXEeipzBy8OI-LlWvfJl5_XgDYALlIYenSu9X_dX0Gf8WSdg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>de Kanter, Ruben</creator><creator>Sidharta, Patricia N.</creator><creator>Delahaye, Stéphane</creator><creator>Gnerre, Carmela</creator><creator>Segrestaa, Jerome</creator><creator>Buchmann, Stephan</creator><creator>Kohl, Christopher</creator><creator>Treiber, Alexander</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7503-9776</orcidid></search><sort><creationdate>20160301</creationdate><title>Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions</title><author>de Kanter, Ruben ; Sidharta, Patricia N. ; Delahaye, Stéphane ; Gnerre, Carmela ; Segrestaa, Jerome ; Buchmann, Stephan ; Kohl, Christopher ; Treiber, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Cyclosporine - pharmacology</topic><topic>Cytochrome P-450 CYP3A - metabolism</topic><topic>Cytochrome P-450 CYP3A Inhibitors - pharmacology</topic><topic>Drug Interactions</topic><topic>Endothelin A Receptor Antagonists - pharmacokinetics</topic><topic>Endothelin B Receptor Antagonists - pharmacokinetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Ketoconazole - pharmacology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Biological</topic><topic>Original Research Article</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacotherapy</topic><topic>Pyrimidines - blood</topic><topic>Pyrimidines - pharmacokinetics</topic><topic>Rifampin - pharmacology</topic><topic>Sildenafil Citrate - pharmacology</topic><topic>Sulfonamides - blood</topic><topic>Sulfonamides - pharmacokinetics</topic><topic>Warfarin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Kanter, Ruben</creatorcontrib><creatorcontrib>Sidharta, Patricia N.</creatorcontrib><creatorcontrib>Delahaye, Stéphane</creatorcontrib><creatorcontrib>Gnerre, Carmela</creatorcontrib><creatorcontrib>Segrestaa, Jerome</creatorcontrib><creatorcontrib>Buchmann, Stephan</creatorcontrib><creatorcontrib>Kohl, Christopher</creatorcontrib><creatorcontrib>Treiber, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical pharmacokinetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Kanter, Ruben</au><au>Sidharta, Patricia N.</au><au>Delahaye, Stéphane</au><au>Gnerre, Carmela</au><au>Segrestaa, Jerome</au><au>Buchmann, Stephan</au><au>Kohl, Christopher</au><au>Treiber, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions</atitle><jtitle>Clinical pharmacokinetics</jtitle><stitle>Clin Pharmacokinet</stitle><addtitle>Clin Pharmacokinet</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>55</volume><issue>3</issue><spage>369</spage><epage>380</epage><pages>369-380</pages><issn>0312-5963</issn><eissn>1179-1926</eissn><abstract>Introduction Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. Methods A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. Results The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan–drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. Conclusion This example of the application of PBPK modeling to predict drug–drug interactions was used to support the labeling of macitentan (Opsumit).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>26385839</pmid><doi>10.1007/s40262-015-0322-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7503-9776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0312-5963
ispartof Clinical pharmacokinetics, 2016-03, Vol.55 (3), p.369-380
issn 0312-5963
1179-1926
language eng
recordid cdi_proquest_miscellaneous_1767068355
source Springer Link
subjects Adult
Cyclosporine - pharmacology
Cytochrome P-450 CYP3A - metabolism
Cytochrome P-450 CYP3A Inhibitors - pharmacology
Drug Interactions
Endothelin A Receptor Antagonists - pharmacokinetics
Endothelin B Receptor Antagonists - pharmacokinetics
Humans
Internal Medicine
Ketoconazole - pharmacology
Male
Medicine
Medicine & Public Health
Models, Biological
Original Research Article
Pharmacology/Toxicology
Pharmacotherapy
Pyrimidines - blood
Pyrimidines - pharmacokinetics
Rifampin - pharmacology
Sildenafil Citrate - pharmacology
Sulfonamides - blood
Sulfonamides - pharmacokinetics
Warfarin - pharmacology
title Physiologically-Based Pharmacokinetic Modeling of Macitentan: Prediction of Drug–Drug Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiologically-Based%20Pharmacokinetic%20Modeling%20of%20Macitentan:%20Prediction%20of%20Drug%E2%80%93Drug%20Interactions&rft.jtitle=Clinical%20pharmacokinetics&rft.au=de%20Kanter,%20Ruben&rft.date=2016-03-01&rft.volume=55&rft.issue=3&rft.spage=369&rft.epage=380&rft.pages=369-380&rft.issn=0312-5963&rft.eissn=1179-1926&rft_id=info:doi/10.1007/s40262-015-0322-y&rft_dat=%3Cproquest_cross%3E1767068355%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-8723b28daec7296d33bc2ce3258e637c1a67fdf445cb812860a4967f7a9187623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1780542244&rft_id=info:pmid/26385839&rfr_iscdi=true