Loading…
Nutrient Dynamics of Drained Peatland Forests
Forest drainage has been used rather widely to improve tree growth in peatlands in northern and northeastern Europe and some parts of North America. The consequent fundamental change in the vegetation presumably gives rise to a concomitant change in the distribution of nutrients within the ecosystem...
Saved in:
Published in: | Biogeochemistry 2003-05, Vol.63 (3), p.269-298 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Forest drainage has been used rather widely to improve tree growth in peatlands in northern and northeastern Europe and some parts of North America. The consequent fundamental change in the vegetation presumably gives rise to a concomitant change in the distribution of nutrients within the ecosystem. We investigated the post-drainage dynamics of soil properties (top 30-cm) and tree stand biomass on a series of peatlands drained for forestry in Finland to evaluate the sufficiency of soil nutrient pools for production forestry, and the ability of a floristic-ecological peatland site type classification for estimating soil nutrient status. The nutrient dynamics were assessed by comparing the nutrient pools in a large number of peatland sites differing in drainage age. Drainage unambiguously influenced stand biomass and structure and, consequently, the nutrient pool bound in trees. Nevertheless, with the exception of Mg, ditching did not decrease soil nutrient pools over the 75-year observation period. Thus, the soil pools seem sufficient for forest production on these sites. The decreasing trend in the soil Mg pool points on a potential risk in the long run, however. Peat depth and temperature sum were identified as significant sources of variation for the soil nutrient pools. Using soil Ca, K, Fe and N pools, on average 49% of our sites were grouped correctly according to the floristic-ecological site type classification. This classification most successfully described soil nutrient status among the most nutrient-poor sites. We concluded that the floristic-ecological classification of drained peatlands successfully describes their production potential, but not their total nutrient pools in varying thermoclimatic conditions. |
---|---|
ISSN: | 0168-2563 1573-515X |
DOI: | 10.1023/A:1023348806857 |