Loading…

Photon pair generation from compact silicon microring resonators using microwatt-level pump powers

Microring resonators made from silicon are becoming a popular microscale device format for generating photon pairs at telecommunications wavelengths at room temperature. In compact devices with a footprint less than 5 × 10(-4) mm2, we demonstrate pair generation using only a few microwatts of averag...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2016-02, Vol.24 (4), p.3313-3328
Main Authors: Savanier, Marc, Kumar, Ranjeet, Mookherjea, Shayan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microring resonators made from silicon are becoming a popular microscale device format for generating photon pairs at telecommunications wavelengths at room temperature. In compact devices with a footprint less than 5 × 10(-4) mm2, we demonstrate pair generation using only a few microwatts of average pump power. We discuss the role played by important parameters such as the loss, group-velocity dispersion and the ring-waveguide coupling coefficient in finding the optimum operating point for silicon microring pair generation. Silicon photonics can be fabricated using deep ultraviolet lithography wafer-scale fabrication processes, which is scalable and cost-effective. Such small devices and low pump power requirements, and the side-coupled waveguide geometry which uses an integrated waveguide, could be beneficial for future scaled-up architectures where many pair-generation devices are required on the same chip.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.24.003313