Loading…
Tyrosine 397 phosphorylation is critical for FAK-promoted Rac1 activation and invasive properties in oral squamous cell carcinoma cells
Oral squamous cell carcinoma (OSCC) is a common cancer worldwide. Despite advances in diagnosis and therapy, treatment options for patients with metastatic OSCC are few, due in part to the limited understanding of the molecular events involved in the invasion and metastasis of OSCC. In this study, w...
Saved in:
Published in: | Laboratory investigation 2016-03, Vol.96 (3), p.296-306 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oral squamous cell carcinoma (OSCC) is a common cancer worldwide. Despite advances in diagnosis and therapy, treatment options for patients with metastatic OSCC are few, due in part to the limited understanding of the molecular events involved in the invasion and metastasis of OSCC. In this study, we investigated the expression of focal adhesion kinase (FAK) and its tyrosine 397 phosphorylation (pY397) in the tissue specimens of OSCC. The roles of pY397 in regulating the activities of Rac1 and cortactin and the invasive properties of OSCC cells were further determined. Results from immunohistochemical analyses in 9 benign, 19 premalignant, and 19 malignant oral tissues showed that the immunoreactivity of FAK was observed in 5 benign (56%), 19 premalignant (100%), and 18 malignant tissues (95%), whereas the immunoreactivity of pY397 was only found in 1 of 9 (11%) benign lesions but was observed in 9 premalignant (47%) and 12 malignant (63%) lesions. Compared with the low-invading SCC4 cells, the high-invading OECM-1 cells exhibited higher levels of FAK expression and pY397, correlating with higher levels of GTP-bound Rac1 and cortactin phosphorylation. Manipulation of FAK expression or Y397 phosphorylation in SCC4, FaDu, OECM-1, or HSC-3 cells regulated their Rac1 activities and invasive properties. Furthermore, treatment of NSC23766, a Rac1-specific inhibitor, in OECM-1 and HSC-3 cells led to reduced invasive properties. Nevertheless, knockdown of FAK expression or suppression of pY397 had no effect on the cortactin activity in OECM-1 cells. The data collectively suggest that pY397 plays critical roles in the FAK-promoted Rac1 activation and invasive properties in OSCC cells. Thus, the inhibition of FAK phosphorylation at Y397 or Rac1 activity can serve as a therapeutic strategy for treating patients with metastatic OSCC. |
---|---|
ISSN: | 0023-6837 1530-0307 |
DOI: | 10.1038/labinvest.2015.151 |