Loading…

The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor

Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentati...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 1999, Vol.39 (10-11), p.329-332
Main Authors: Karama, A.B., Onyejekwe, O.O., Brouckaert, C.J., Buckley, C.A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3
cites
container_end_page 332
container_issue 10-11
container_start_page 329
container_title Water science and technology
container_volume 39
creator Karama, A.B.
Onyejekwe, O.O.
Brouckaert, C.J.
Buckley, C.A.
description Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.
doi_str_mv 10.1016/S0273-1223(99)00294-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17689562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273122399002942</els_id><sourcerecordid>1943409001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3</originalsourceid><addsrcrecordid>eNqNkd1rFDEUxYNWcFv9E4SAIu3D1JuP-chTkdVqodCHrs8hm9y0KbOTNZlZ2P_ezG5R8EWfLlx-99zDOYS8Y3DJgDWf7oG3omKci3OlLgC4khV_QRZMqaZSreAvySlAB5J3rKtPyOI3_5qc5vwEAK2QsCDT6hHplJFGT23cbKfRjCEOpqe-n4Kjbj-YTbCZni-vv1xc0hXaxyH8nJD6mCjuTD-Vg-GBjkUHvQ824GD3s5wZqLFj2JkRHc395B6QJiyrmN6QV970Gd8-zzPy4_rravm9ur37drP8fFtZIdlY8bZzWEsFQjHG1w6MVxxbi2A5omIdWrdGr0StpEDX-Y43knGs-ZrJNXhxRj4edbcpFs951JuQLfa9GTBOWbO26VTd8P8ARdu2ihXw_V_gU5xSyaswxYQEBTBT9ZGyKeac0OttChuT9pqBngvUhwL1XIhWSh8K1LOND8_qJlvT-2QGG_Kf447L8qFgV0cMS3a7gEnnQ-zoQkI7ahfDPx79ApXSrIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943409001</pqid></control><display><type>article</type><title>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</title><source>Alma/SFX Local Collection</source><creator>Karama, A.B. ; Onyejekwe, O.O. ; Brouckaert, C.J. ; Buckley, C.A.</creator><contributor>Nyholm, N (eds) ; Englande, AJ Jr</contributor><creatorcontrib>Karama, A.B. ; Onyejekwe, O.O. ; Brouckaert, C.J. ; Buckley, C.A. ; Nyholm, N (eds) ; Englande, AJ Jr</creatorcontrib><description>Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 0080428185</identifier><identifier>ISBN: 9780080428185</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.1016/S0273-1223(99)00294-2</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Activated sludge ; Applied sciences ; Biological and medical sciences ; Biological treatment of waters ; Biotechnology ; Clarifiers ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Computers ; Construction costs ; Dynamics ; Environment and pollution ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; General purification processes ; Hydrodynamics ; Industrial applications and implications. Economical aspects ; Mathematical models ; Pollution ; Reactors ; residence time distribution ; Sedimentation ; Sedimentation tanks ; Sludge ; Tanks ; Wastewater ; Wastewater treatment ; Wastewater treatment plants ; Wastewaters ; Water treatment and pollution ; Water treatment plants</subject><ispartof>Water science and technology, 1999, Vol.39 (10-11), p.329-332</ispartof><rights>1999 International Association on Water Quality</rights><rights>1999 INIST-CNRS</rights><rights>Copyright IWA Publishing May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,4010,4036,4037,23911,23912,25121,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1824409$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nyholm, N (eds)</contributor><contributor>Englande, AJ Jr</contributor><creatorcontrib>Karama, A.B.</creatorcontrib><creatorcontrib>Onyejekwe, O.O.</creatorcontrib><creatorcontrib>Brouckaert, C.J.</creatorcontrib><creatorcontrib>Buckley, C.A.</creatorcontrib><title>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</title><title>Water science and technology</title><description>Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.</description><subject>Activated sludge</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biotechnology</subject><subject>Clarifiers</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Construction costs</subject><subject>Dynamics</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>Hydrodynamics</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical models</subject><subject>Pollution</subject><subject>Reactors</subject><subject>residence time distribution</subject><subject>Sedimentation</subject><subject>Sedimentation tanks</subject><subject>Sludge</subject><subject>Tanks</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><subject>Water treatment plants</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>0080428185</isbn><isbn>9780080428185</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkd1rFDEUxYNWcFv9E4SAIu3D1JuP-chTkdVqodCHrs8hm9y0KbOTNZlZ2P_ezG5R8EWfLlx-99zDOYS8Y3DJgDWf7oG3omKci3OlLgC4khV_QRZMqaZSreAvySlAB5J3rKtPyOI3_5qc5vwEAK2QsCDT6hHplJFGT23cbKfRjCEOpqe-n4Kjbj-YTbCZni-vv1xc0hXaxyH8nJD6mCjuTD-Vg-GBjkUHvQ824GD3s5wZqLFj2JkRHc395B6QJiyrmN6QV970Gd8-zzPy4_rravm9ur37drP8fFtZIdlY8bZzWEsFQjHG1w6MVxxbi2A5omIdWrdGr0StpEDX-Y43knGs-ZrJNXhxRj4edbcpFs951JuQLfa9GTBOWbO26VTd8P8ARdu2ihXw_V_gU5xSyaswxYQEBTBT9ZGyKeac0OttChuT9pqBngvUhwL1XIhWSh8K1LOND8_qJlvT-2QGG_Kf447L8qFgV0cMS3a7gEnnQ-zoQkI7ahfDPx79ApXSrIU</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Karama, A.B.</creator><creator>Onyejekwe, O.O.</creator><creator>Brouckaert, C.J.</creator><creator>Buckley, C.A.</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>IWA Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TV</scope></search><sort><creationdate>1999</creationdate><title>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</title><author>Karama, A.B. ; Onyejekwe, O.O. ; Brouckaert, C.J. ; Buckley, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Activated sludge</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biotechnology</topic><topic>Clarifiers</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Construction costs</topic><topic>Dynamics</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>Hydrodynamics</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical models</topic><topic>Pollution</topic><topic>Reactors</topic><topic>residence time distribution</topic><topic>Sedimentation</topic><topic>Sedimentation tanks</topic><topic>Sludge</topic><topic>Tanks</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karama, A.B.</creatorcontrib><creatorcontrib>Onyejekwe, O.O.</creatorcontrib><creatorcontrib>Brouckaert, C.J.</creatorcontrib><creatorcontrib>Buckley, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Pollution Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karama, A.B.</au><au>Onyejekwe, O.O.</au><au>Brouckaert, C.J.</au><au>Buckley, C.A.</au><au>Nyholm, N (eds)</au><au>Englande, AJ Jr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</atitle><jtitle>Water science and technology</jtitle><date>1999</date><risdate>1999</risdate><volume>39</volume><issue>10-11</issue><spage>329</spage><epage>332</epage><pages>329-332</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>0080428185</isbn><isbn>9780080428185</isbn><coden>WSTED4</coden><abstract>Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0273-1223(99)00294-2</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 1999, Vol.39 (10-11), p.329-332
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_17689562
source Alma/SFX Local Collection
subjects Activated sludge
Applied sciences
Biological and medical sciences
Biological treatment of waters
Biotechnology
Clarifiers
Computational fluid dynamics
Computer applications
Computer simulation
Computers
Construction costs
Dynamics
Environment and pollution
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental and applied biological sciences. Psychology
General purification processes
Hydrodynamics
Industrial applications and implications. Economical aspects
Mathematical models
Pollution
Reactors
residence time distribution
Sedimentation
Sedimentation tanks
Sludge
Tanks
Wastewater
Wastewater treatment
Wastewater treatment plants
Wastewaters
Water treatment and pollution
Water treatment plants
title The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20computational%20fluid%20dynamics%20(CFD).%20Technique%20for%20evaluating%20the%20efficiency%20of%20an%20activated%20sludge%20reactor&rft.jtitle=Water%20science%20and%20technology&rft.au=Karama,%20A.B.&rft.date=1999&rft.volume=39&rft.issue=10-11&rft.spage=329&rft.epage=332&rft.pages=329-332&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=0080428185&rft.isbn_list=9780080428185&rft.coden=WSTED4&rft_id=info:doi/10.1016/S0273-1223(99)00294-2&rft_dat=%3Cproquest_cross%3E1943409001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943409001&rft_id=info:pmid/&rfr_iscdi=true