Loading…
The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor
Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentati...
Saved in:
Published in: | Water science and technology 1999, Vol.39 (10-11), p.329-332 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3 |
---|---|
cites | |
container_end_page | 332 |
container_issue | 10-11 |
container_start_page | 329 |
container_title | Water science and technology |
container_volume | 39 |
creator | Karama, A.B. Onyejekwe, O.O. Brouckaert, C.J. Buckley, C.A. |
description | Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results. |
doi_str_mv | 10.1016/S0273-1223(99)00294-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17689562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273122399002942</els_id><sourcerecordid>1943409001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3</originalsourceid><addsrcrecordid>eNqNkd1rFDEUxYNWcFv9E4SAIu3D1JuP-chTkdVqodCHrs8hm9y0KbOTNZlZ2P_ezG5R8EWfLlx-99zDOYS8Y3DJgDWf7oG3omKci3OlLgC4khV_QRZMqaZSreAvySlAB5J3rKtPyOI3_5qc5vwEAK2QsCDT6hHplJFGT23cbKfRjCEOpqe-n4Kjbj-YTbCZni-vv1xc0hXaxyH8nJD6mCjuTD-Vg-GBjkUHvQ824GD3s5wZqLFj2JkRHc395B6QJiyrmN6QV970Gd8-zzPy4_rravm9ur37drP8fFtZIdlY8bZzWEsFQjHG1w6MVxxbi2A5omIdWrdGr0StpEDX-Y43knGs-ZrJNXhxRj4edbcpFs951JuQLfa9GTBOWbO26VTd8P8ARdu2ihXw_V_gU5xSyaswxYQEBTBT9ZGyKeac0OttChuT9pqBngvUhwL1XIhWSh8K1LOND8_qJlvT-2QGG_Kf447L8qFgV0cMS3a7gEnnQ-zoQkI7ahfDPx79ApXSrIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943409001</pqid></control><display><type>article</type><title>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</title><source>Alma/SFX Local Collection</source><creator>Karama, A.B. ; Onyejekwe, O.O. ; Brouckaert, C.J. ; Buckley, C.A.</creator><contributor>Nyholm, N (eds) ; Englande, AJ Jr</contributor><creatorcontrib>Karama, A.B. ; Onyejekwe, O.O. ; Brouckaert, C.J. ; Buckley, C.A. ; Nyholm, N (eds) ; Englande, AJ Jr</creatorcontrib><description>Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 0080428185</identifier><identifier>ISBN: 9780080428185</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.1016/S0273-1223(99)00294-2</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Activated sludge ; Applied sciences ; Biological and medical sciences ; Biological treatment of waters ; Biotechnology ; Clarifiers ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Computers ; Construction costs ; Dynamics ; Environment and pollution ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; General purification processes ; Hydrodynamics ; Industrial applications and implications. Economical aspects ; Mathematical models ; Pollution ; Reactors ; residence time distribution ; Sedimentation ; Sedimentation tanks ; Sludge ; Tanks ; Wastewater ; Wastewater treatment ; Wastewater treatment plants ; Wastewaters ; Water treatment and pollution ; Water treatment plants</subject><ispartof>Water science and technology, 1999, Vol.39 (10-11), p.329-332</ispartof><rights>1999 International Association on Water Quality</rights><rights>1999 INIST-CNRS</rights><rights>Copyright IWA Publishing May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,4010,4036,4037,23911,23912,25121,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1824409$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nyholm, N (eds)</contributor><contributor>Englande, AJ Jr</contributor><creatorcontrib>Karama, A.B.</creatorcontrib><creatorcontrib>Onyejekwe, O.O.</creatorcontrib><creatorcontrib>Brouckaert, C.J.</creatorcontrib><creatorcontrib>Buckley, C.A.</creatorcontrib><title>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</title><title>Water science and technology</title><description>Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.</description><subject>Activated sludge</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biotechnology</subject><subject>Clarifiers</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Construction costs</subject><subject>Dynamics</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>Hydrodynamics</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical models</subject><subject>Pollution</subject><subject>Reactors</subject><subject>residence time distribution</subject><subject>Sedimentation</subject><subject>Sedimentation tanks</subject><subject>Sludge</subject><subject>Tanks</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><subject>Water treatment plants</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>0080428185</isbn><isbn>9780080428185</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkd1rFDEUxYNWcFv9E4SAIu3D1JuP-chTkdVqodCHrs8hm9y0KbOTNZlZ2P_ezG5R8EWfLlx-99zDOYS8Y3DJgDWf7oG3omKci3OlLgC4khV_QRZMqaZSreAvySlAB5J3rKtPyOI3_5qc5vwEAK2QsCDT6hHplJFGT23cbKfRjCEOpqe-n4Kjbj-YTbCZni-vv1xc0hXaxyH8nJD6mCjuTD-Vg-GBjkUHvQ824GD3s5wZqLFj2JkRHc395B6QJiyrmN6QV970Gd8-zzPy4_rravm9ur37drP8fFtZIdlY8bZzWEsFQjHG1w6MVxxbi2A5omIdWrdGr0StpEDX-Y43knGs-ZrJNXhxRj4edbcpFs951JuQLfa9GTBOWbO26VTd8P8ARdu2ihXw_V_gU5xSyaswxYQEBTBT9ZGyKeac0OttChuT9pqBngvUhwL1XIhWSh8K1LOND8_qJlvT-2QGG_Kf447L8qFgV0cMS3a7gEnnQ-zoQkI7ahfDPx79ApXSrIU</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Karama, A.B.</creator><creator>Onyejekwe, O.O.</creator><creator>Brouckaert, C.J.</creator><creator>Buckley, C.A.</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>IWA Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TV</scope></search><sort><creationdate>1999</creationdate><title>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</title><author>Karama, A.B. ; Onyejekwe, O.O. ; Brouckaert, C.J. ; Buckley, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Activated sludge</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biotechnology</topic><topic>Clarifiers</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Construction costs</topic><topic>Dynamics</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>Hydrodynamics</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical models</topic><topic>Pollution</topic><topic>Reactors</topic><topic>residence time distribution</topic><topic>Sedimentation</topic><topic>Sedimentation tanks</topic><topic>Sludge</topic><topic>Tanks</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karama, A.B.</creatorcontrib><creatorcontrib>Onyejekwe, O.O.</creatorcontrib><creatorcontrib>Brouckaert, C.J.</creatorcontrib><creatorcontrib>Buckley, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Pollution Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karama, A.B.</au><au>Onyejekwe, O.O.</au><au>Brouckaert, C.J.</au><au>Buckley, C.A.</au><au>Nyholm, N (eds)</au><au>Englande, AJ Jr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor</atitle><jtitle>Water science and technology</jtitle><date>1999</date><risdate>1999</risdate><volume>39</volume><issue>10-11</issue><spage>329</spage><epage>332</epage><pages>329-332</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>0080428185</isbn><isbn>9780080428185</isbn><coden>WSTED4</coden><abstract>Adequate models for wastewater treatment are limited by the cost of constructing them. Many a time, studies carried out on wastewater treatment plants have not been very useful in enhancing their performance. As a result, numerous mathematical models presented by different researchers on sedimentation tanks and clarifiers have not been getting much attention. Recently, improvement in computers and computational techniques have led to the development of a new generation of highly efficient programs for simulating real fluid flow within any type of geometry including clarifiers and activated sludge reactors. Herein, a computational fluid dynamics code, PHOENICS, (Rosten and Spalding, 1990) is used to determine the performance of an anaerobic zone in an activated sludge reactor. Plausible results were achieved when experimental data were compared with numerical results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0273-1223(99)00294-2</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 1999, Vol.39 (10-11), p.329-332 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_17689562 |
source | Alma/SFX Local Collection |
subjects | Activated sludge Applied sciences Biological and medical sciences Biological treatment of waters Biotechnology Clarifiers Computational fluid dynamics Computer applications Computer simulation Computers Construction costs Dynamics Environment and pollution Exact sciences and technology Fluid dynamics Fluid flow Fundamental and applied biological sciences. Psychology General purification processes Hydrodynamics Industrial applications and implications. Economical aspects Mathematical models Pollution Reactors residence time distribution Sedimentation Sedimentation tanks Sludge Tanks Wastewater Wastewater treatment Wastewater treatment plants Wastewaters Water treatment and pollution Water treatment plants |
title | The use of computational fluid dynamics (CFD). Technique for evaluating the efficiency of an activated sludge reactor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20computational%20fluid%20dynamics%20(CFD).%20Technique%20for%20evaluating%20the%20efficiency%20of%20an%20activated%20sludge%20reactor&rft.jtitle=Water%20science%20and%20technology&rft.au=Karama,%20A.B.&rft.date=1999&rft.volume=39&rft.issue=10-11&rft.spage=329&rft.epage=332&rft.pages=329-332&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=0080428185&rft.isbn_list=9780080428185&rft.coden=WSTED4&rft_id=info:doi/10.1016/S0273-1223(99)00294-2&rft_dat=%3Cproquest_cross%3E1943409001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-278de549039112bd0af92e7ce0c2ee918ecdbef935943ed8f826412e52b14b0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943409001&rft_id=info:pmid/&rfr_iscdi=true |