Loading…

Insufficient Production and Tissue Delivery of CD4 super(+) Memory T Cells in Rapidly Progressive Simian Immunodeficiency Virus Infection

The mechanisms linking human immunodeficiency virus replication to the progressive immunodeficiency of acquired immune deficiency syndrome are controversial, particularly the relative contribution of CD4 super(+) T cell destruction. Here, we used the simian immunodeficiency virus (SIV) model to inve...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of experimental medicine 2004-11, Vol.200 (10), p.1299-1314
Main Authors: Picker, Louis J, Hagen, Shoko I, Lum, Richard, Reed-Inderbitzin, Edward F, Daly, Lyn M, Sylwester, Andrew W, Walker, Joshua M, Siess, Don C, Piatak, Michael, Wang, Chenxi, Allison, David B, Maino, Vernon C, Lifson, Jeffrey D, Kodama, Toshiaki, Axthelm, Michael K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanisms linking human immunodeficiency virus replication to the progressive immunodeficiency of acquired immune deficiency syndrome are controversial, particularly the relative contribution of CD4 super(+) T cell destruction. Here, we used the simian immunodeficiency virus (SIV) model to investigate the relationship between systemic CD4 super(+) T cell dynamics and rapid disease progression. Of 18 rhesus macaques (RMs) infected with CCR5-tropic SIVmac239 (n = 14) or CXCR4-tropic SIVmac155T3 (n = 4), 4 of the former group manifested end-stage SIV disease by 200 d after infection. In SIVmac155T3 infections, naive CD4 super(+) T cells were dramatically depleted, but this population was spared by SIVmac239, even in rapid progressors. In contrast, all SIVmac239-infected RMs demonstrated substantial systemic depletion of CD4 super(+) memory T cells by day 28 after infection. Surprisingly, the extent of CD4 super(+) memory T cell depletion was not, by itself, a strong predictor of rapid progression. However, in all RMs destined for stable infection, this depletion was countered by a striking increase in production of short-lived CD4 super(+) memory T cells, many of which rapidly migrated to tissue. In all rapid progressors (P < 0.0001), production of these cells initiated but failed by day 42 of infection, and tissue delivery of new CD4 super(+) memory T cells ceased. Thus, although profound depletion of tissue CD4 super(+) memory T cells appeared to be a prerequisite for early pathogenesis, it was the inability to respond to this depletion with sustained production of tissue-homing CD4 super(+) memory T cells that best distinguished rapid progressors, suggesting that mechanisms of the CD4 super(+) memory T cell generation play a crucial role in maintaining immune homeostasis in stable SIV infection.
ISSN:0022-1007
1892-1007