Loading…

Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate

The receiver‐operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1‐specificity) for diffe...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2016-03, Vol.35 (7), p.1090-1102
Main Authors: Rodríguez-Álvarez, María Xosé, Meira-Machado, Luís, Abu-Assi, Emad, Raposeiras-Roubín, Sergio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3
cites cdi_FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3
container_end_page 1102
container_issue 7
container_start_page 1090
container_title Statistics in medicine
container_volume 35
creator Rodríguez-Álvarez, María Xosé
Meira-Machado, Luís
Abu-Assi, Emad
Raposeiras-Roubín, Sergio
description The receiver‐operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1‐specificity) for different cut‐off values used to classify an individual as healthy or diseased. In time‐to‐event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time‐dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time‐dependent disease outcomes, time‐dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time‐dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right‐censored data, as well as covariate‐dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.6769
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770219100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3990373091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3</originalsourceid><addsrcrecordid>eNp10F1LHDEUBuBQlO5qC_0FZcAbb0bzNUnmsiy6CnYXu4qFXoRM5gxkOx9rMmPrv2_GXVcoeJOE5OEl50XoC8FnBGN6HlxzJqTIP6ApwblMMc3UAZpiKmUqJMkm6CiENcaEZFR-RBMquJJYqCn6tejajfGmgd47m0DoXWN617VJVyXxDGkJG2hLaPvkx3KW2ME_QUhs15ZuZKZOojXjRe_aoRvGtyfjnenhEzqsTB3g824_RveXF3ezq_RmOb-efbtJbcZVnipWGAF5RQqpOGGcqirnNK6FIFVlcsol5QILCpUq89ICEFzKwjBjVSGUZcfodJu78d3jEEfQjQsW6tq0ED-kiZSYkjw2FenJf3TdDT5O8aI4YwxL8RZofReCh0pvfKzFP2uC9Vi4joXrsfBIv-4Ch6KBcg9fG44g3YI_robnd4P06vr7LnDnXejh794b_zs6JjP9sJjr1WL-83bGpebsHwAFmSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774333076</pqid></control><display><type>article</type><title>Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate</title><source>Wiley</source><creator>Rodríguez-Álvarez, María Xosé ; Meira-Machado, Luís ; Abu-Assi, Emad ; Raposeiras-Roubín, Sergio</creator><creatorcontrib>Rodríguez-Álvarez, María Xosé ; Meira-Machado, Luís ; Abu-Assi, Emad ; Raposeiras-Roubín, Sergio</creatorcontrib><description>The receiver‐operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1‐specificity) for different cut‐off values used to classify an individual as healthy or diseased. In time‐to‐event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time‐dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time‐dependent disease outcomes, time‐dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time‐dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right‐censored data, as well as covariate‐dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6769</identifier><identifier>PMID: 26487068</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acute coronary syndrome ; Acute Coronary Syndrome - diagnosis ; Biomarkers ; Biomarkers - analysis ; Biostatistics ; Computer Simulation ; Estimating techniques ; False Positive Reactions ; Humans ; kernel-type smoothing ; Medical diagnosis ; Medical statistics ; Models, Statistical ; Predictive Value of Tests ; ROC Curve ; Statistics, Nonparametric ; Survival Analysis ; Time Factors ; time-dependent ROC curve</subject><ispartof>Statistics in medicine, 2016-03, Vol.35 (7), p.1090-1102</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar 30, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3</citedby><cites>FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26487068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Álvarez, María Xosé</creatorcontrib><creatorcontrib>Meira-Machado, Luís</creatorcontrib><creatorcontrib>Abu-Assi, Emad</creatorcontrib><creatorcontrib>Raposeiras-Roubín, Sergio</creatorcontrib><title>Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>The receiver‐operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1‐specificity) for different cut‐off values used to classify an individual as healthy or diseased. In time‐to‐event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time‐dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time‐dependent disease outcomes, time‐dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time‐dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right‐censored data, as well as covariate‐dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>acute coronary syndrome</subject><subject>Acute Coronary Syndrome - diagnosis</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Biostatistics</subject><subject>Computer Simulation</subject><subject>Estimating techniques</subject><subject>False Positive Reactions</subject><subject>Humans</subject><subject>kernel-type smoothing</subject><subject>Medical diagnosis</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Predictive Value of Tests</subject><subject>ROC Curve</subject><subject>Statistics, Nonparametric</subject><subject>Survival Analysis</subject><subject>Time Factors</subject><subject>time-dependent ROC curve</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10F1LHDEUBuBQlO5qC_0FZcAbb0bzNUnmsiy6CnYXu4qFXoRM5gxkOx9rMmPrv2_GXVcoeJOE5OEl50XoC8FnBGN6HlxzJqTIP6ApwblMMc3UAZpiKmUqJMkm6CiENcaEZFR-RBMquJJYqCn6tejajfGmgd47m0DoXWN617VJVyXxDGkJG2hLaPvkx3KW2ME_QUhs15ZuZKZOojXjRe_aoRvGtyfjnenhEzqsTB3g824_RveXF3ezq_RmOb-efbtJbcZVnipWGAF5RQqpOGGcqirnNK6FIFVlcsol5QILCpUq89ICEFzKwjBjVSGUZcfodJu78d3jEEfQjQsW6tq0ED-kiZSYkjw2FenJf3TdDT5O8aI4YwxL8RZofReCh0pvfKzFP2uC9Vi4joXrsfBIv-4Ch6KBcg9fG44g3YI_robnd4P06vr7LnDnXejh794b_zs6JjP9sJjr1WL-83bGpebsHwAFmSI</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Rodríguez-Álvarez, María Xosé</creator><creator>Meira-Machado, Luís</creator><creator>Abu-Assi, Emad</creator><creator>Raposeiras-Roubín, Sergio</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20160330</creationdate><title>Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate</title><author>Rodríguez-Álvarez, María Xosé ; Meira-Machado, Luís ; Abu-Assi, Emad ; Raposeiras-Roubín, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acute coronary syndrome</topic><topic>Acute Coronary Syndrome - diagnosis</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Biostatistics</topic><topic>Computer Simulation</topic><topic>Estimating techniques</topic><topic>False Positive Reactions</topic><topic>Humans</topic><topic>kernel-type smoothing</topic><topic>Medical diagnosis</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Predictive Value of Tests</topic><topic>ROC Curve</topic><topic>Statistics, Nonparametric</topic><topic>Survival Analysis</topic><topic>Time Factors</topic><topic>time-dependent ROC curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Álvarez, María Xosé</creatorcontrib><creatorcontrib>Meira-Machado, Luís</creatorcontrib><creatorcontrib>Abu-Assi, Emad</creatorcontrib><creatorcontrib>Raposeiras-Roubín, Sergio</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Álvarez, María Xosé</au><au>Meira-Machado, Luís</au><au>Abu-Assi, Emad</au><au>Raposeiras-Roubín, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-03-30</date><risdate>2016</risdate><volume>35</volume><issue>7</issue><spage>1090</spage><epage>1102</epage><pages>1090-1102</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>The receiver‐operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1‐specificity) for different cut‐off values used to classify an individual as healthy or diseased. In time‐to‐event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time‐dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time‐dependent disease outcomes, time‐dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time‐dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right‐censored data, as well as covariate‐dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26487068</pmid><doi>10.1002/sim.6769</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2016-03, Vol.35 (7), p.1090-1102
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_1770219100
source Wiley
subjects acute coronary syndrome
Acute Coronary Syndrome - diagnosis
Biomarkers
Biomarkers - analysis
Biostatistics
Computer Simulation
Estimating techniques
False Positive Reactions
Humans
kernel-type smoothing
Medical diagnosis
Medical statistics
Models, Statistical
Predictive Value of Tests
ROC Curve
Statistics, Nonparametric
Survival Analysis
Time Factors
time-dependent ROC curve
title Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20time-dependent%20ROC%20curves%20conditional%20on%20a%20continuous%20covariate&rft.jtitle=Statistics%20in%20medicine&rft.au=Rodr%C3%ADguez-%C3%81lvarez,%20Mar%C3%ADa%20Xos%C3%A9&rft.date=2016-03-30&rft.volume=35&rft.issue=7&rft.spage=1090&rft.epage=1102&rft.pages=1090-1102&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6769&rft_dat=%3Cproquest_cross%3E3990373091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5489-83ba6e9f1b78413428f94228fb61ffa9247246062ef8d9dcee10d7ba3ac8b68c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1774333076&rft_id=info:pmid/26487068&rfr_iscdi=true