Loading…
Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading
Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of W...
Saved in:
Published in: | International journal of refractory metals & hard materials 2015-03, Vol.49, p.256-260 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 260 |
container_issue | |
container_start_page | 256 |
container_title | International journal of refractory metals & hard materials |
container_volume | 49 |
creator | Mari, D. Campitelli, E.N. Drake, E.F. Krawitz, A.D. |
description | Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of WC and Co. They all respect the given volume proportion of each phase. Thermoelasticity is considered for the brittle WC, while also plasticity is included to model the Co binder phase. We compare the predictions of our FEM models with phase specific strain measurements performed by in-situ neutron diffraction and discuss the model validation.
•Neutron diffraction is used to measure residual thermal stresses and phase specific strains upon compression•FEM models are used to simulate phase specific strains. Validity of models with respect to experimental data is discussed•FEM model using a Co cubic inclusion into a WC Cube reproduce the general trends of phase specific strains•Tensile yield stress is readily attained above 1000 MPa in the transverse direction in Co and thermal stress is relaxed•FEM combined with neutron diffraction is a useful guideline to understand the specific phase mechanical properties in WC-Co |
doi_str_mv | 10.1016/j.ijrmhm.2014.07.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770271565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436814001504</els_id><sourcerecordid>1770271565</sourcerecordid><originalsourceid>FETCH-LOGICAL-e158t-839750f29aa48d7502150a2418041533a849d37c5aac4d43d072789a7d6edc0e3</originalsourceid><addsrcrecordid>eNotkMtKxDAUhoMoOI6-gYtsBDetJ0nbtC4ELY4KA24UlyEkp06G9GLTKu70GXxDn8SWcXUu_8fh8BFyyiBmwLKLbey2fb2pYw4siUHGAPkeWXDORCQKJvfJAngmokRk-SE5CmELAFmRsQX5XrnGDUjRY43NQOvWonfNK20rOmyQvpS_Xz8MPob4jJbtvOpr7WkYegwBwyW9GZ230dhR3VjabXRAGjo0rnJmprRr6IR2bTMFduzn0-bT-Cn1rbbTeEwOKu0DnvzXJXle3T6V99H68e6hvF5HyNJ8iHJRyBQqXmid5HZqOUtB84TlkLBUCJ0nhRXSpFqbxCbCguQyL7S0GVoDKJbkfHe369u3EcOgahcMeq8bbMegmJTAJUuzdEKvdihO_7w77FUwDhuD1vVoBmVbpxio2b3aqp17NbtXINXkXvwBcIB7gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770271565</pqid></control><display><type>article</type><title>Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading</title><source>ScienceDirect Journals</source><creator>Mari, D. ; Campitelli, E.N. ; Drake, E.F. ; Krawitz, A.D.</creator><creatorcontrib>Mari, D. ; Campitelli, E.N. ; Drake, E.F. ; Krawitz, A.D.</creatorcontrib><description>Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of WC and Co. They all respect the given volume proportion of each phase. Thermoelasticity is considered for the brittle WC, while also plasticity is included to model the Co binder phase. We compare the predictions of our FEM models with phase specific strain measurements performed by in-situ neutron diffraction and discuss the model validation.
•Neutron diffraction is used to measure residual thermal stresses and phase specific strains upon compression•FEM models are used to simulate phase specific strains. Validity of models with respect to experimental data is discussed•FEM model using a Co cubic inclusion into a WC Cube reproduce the general trends of phase specific strains•Tensile yield stress is readily attained above 1000 MPa in the transverse direction in Co and thermal stress is relaxed•FEM combined with neutron diffraction is a useful guideline to understand the specific phase mechanical properties in WC-Co</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2014.07.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accumulation ; Binders ; Cemented carbides ; Cobalt ; FEM ; Finite element method ; Mathematical analysis ; Mathematical models ; Neutron diffraction ; Phase (cyclic) ; Residual stresses ; Sintering ; Strain</subject><ispartof>International journal of refractory metals & hard materials, 2015-03, Vol.49, p.256-260</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1453-468X ; 0000-0003-2309-9368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mari, D.</creatorcontrib><creatorcontrib>Campitelli, E.N.</creatorcontrib><creatorcontrib>Drake, E.F.</creatorcontrib><creatorcontrib>Krawitz, A.D.</creatorcontrib><title>Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading</title><title>International journal of refractory metals & hard materials</title><description>Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of WC and Co. They all respect the given volume proportion of each phase. Thermoelasticity is considered for the brittle WC, while also plasticity is included to model the Co binder phase. We compare the predictions of our FEM models with phase specific strain measurements performed by in-situ neutron diffraction and discuss the model validation.
•Neutron diffraction is used to measure residual thermal stresses and phase specific strains upon compression•FEM models are used to simulate phase specific strains. Validity of models with respect to experimental data is discussed•FEM model using a Co cubic inclusion into a WC Cube reproduce the general trends of phase specific strains•Tensile yield stress is readily attained above 1000 MPa in the transverse direction in Co and thermal stress is relaxed•FEM combined with neutron diffraction is a useful guideline to understand the specific phase mechanical properties in WC-Co</description><subject>Accumulation</subject><subject>Binders</subject><subject>Cemented carbides</subject><subject>Cobalt</subject><subject>FEM</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neutron diffraction</subject><subject>Phase (cyclic)</subject><subject>Residual stresses</subject><subject>Sintering</subject><subject>Strain</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkMtKxDAUhoMoOI6-gYtsBDetJ0nbtC4ELY4KA24UlyEkp06G9GLTKu70GXxDn8SWcXUu_8fh8BFyyiBmwLKLbey2fb2pYw4siUHGAPkeWXDORCQKJvfJAngmokRk-SE5CmELAFmRsQX5XrnGDUjRY43NQOvWonfNK20rOmyQvpS_Xz8MPob4jJbtvOpr7WkYegwBwyW9GZ230dhR3VjabXRAGjo0rnJmprRr6IR2bTMFduzn0-bT-Cn1rbbTeEwOKu0DnvzXJXle3T6V99H68e6hvF5HyNJ8iHJRyBQqXmid5HZqOUtB84TlkLBUCJ0nhRXSpFqbxCbCguQyL7S0GVoDKJbkfHe369u3EcOgahcMeq8bbMegmJTAJUuzdEKvdihO_7w77FUwDhuD1vVoBmVbpxio2b3aqp17NbtXINXkXvwBcIB7gA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Mari, D.</creator><creator>Campitelli, E.N.</creator><creator>Drake, E.F.</creator><creator>Krawitz, A.D.</creator><general>Elsevier Ltd</general><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1453-468X</orcidid><orcidid>https://orcid.org/0000-0003-2309-9368</orcidid></search><sort><creationdate>20150301</creationdate><title>Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading</title><author>Mari, D. ; Campitelli, E.N. ; Drake, E.F. ; Krawitz, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e158t-839750f29aa48d7502150a2418041533a849d37c5aac4d43d072789a7d6edc0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Binders</topic><topic>Cemented carbides</topic><topic>Cobalt</topic><topic>FEM</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neutron diffraction</topic><topic>Phase (cyclic)</topic><topic>Residual stresses</topic><topic>Sintering</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mari, D.</creatorcontrib><creatorcontrib>Campitelli, E.N.</creatorcontrib><creatorcontrib>Drake, E.F.</creatorcontrib><creatorcontrib>Krawitz, A.D.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals & hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mari, D.</au><au>Campitelli, E.N.</au><au>Drake, E.F.</au><au>Krawitz, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading</atitle><jtitle>International journal of refractory metals & hard materials</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>49</volume><spage>256</spage><epage>260</epage><pages>256-260</pages><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Several finite element models of the morphology of WC–10wt.% Co were employed to reproduce the build-up of thermal residual stresses as well as the phase specific strain during loading–unloading in compression. The different models differ only in their geometry of the interpenetrating skeletons of WC and Co. They all respect the given volume proportion of each phase. Thermoelasticity is considered for the brittle WC, while also plasticity is included to model the Co binder phase. We compare the predictions of our FEM models with phase specific strain measurements performed by in-situ neutron diffraction and discuss the model validation.
•Neutron diffraction is used to measure residual thermal stresses and phase specific strains upon compression•FEM models are used to simulate phase specific strains. Validity of models with respect to experimental data is discussed•FEM model using a Co cubic inclusion into a WC Cube reproduce the general trends of phase specific strains•Tensile yield stress is readily attained above 1000 MPa in the transverse direction in Co and thermal stress is relaxed•FEM combined with neutron diffraction is a useful guideline to understand the specific phase mechanical properties in WC-Co</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2014.07.008</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1453-468X</orcidid><orcidid>https://orcid.org/0000-0003-2309-9368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4368 |
ispartof | International journal of refractory metals & hard materials, 2015-03, Vol.49, p.256-260 |
issn | 0263-4368 2213-3917 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770271565 |
source | ScienceDirect Journals |
subjects | Accumulation Binders Cemented carbides Cobalt FEM Finite element method Mathematical analysis Mathematical models Neutron diffraction Phase (cyclic) Residual stresses Sintering Strain |
title | Finite element modeling of the WC–10wt.% Co thermal stresses: Build-up and phase specific strain response during cyclic loading |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20modeling%20of%20the%20WC%E2%80%9310wt.%25%20Co%20thermal%20stresses:%20Build-up%20and%20phase%20specific%20strain%20response%20during%20cyclic%20loading&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Mari,%20D.&rft.date=2015-03-01&rft.volume=49&rft.spage=256&rft.epage=260&rft.pages=256-260&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2014.07.008&rft_dat=%3Cproquest_elsev%3E1770271565%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e158t-839750f29aa48d7502150a2418041533a849d37c5aac4d43d072789a7d6edc0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770271565&rft_id=info:pmid/&rfr_iscdi=true |