Loading…

Comparison of radar and video observations of shallow water breaking waves

Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In ad...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2003-04, Vol.41 (4), p.832-844
Main Authors: Haller, M.C., Lyzenga, D.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In addition, the radar backscatter from shallow water breaking events is responsible for 40% to 50% of the total cross section, which is a much larger contribution than typically observed for deepwater breaking events. Based on estimates of the area of individual breaking regions determined from digitized video images, the radar cross section per unit area of the turbulent breaking region is shown to be well approximated by a value of -1.9 dB at 31/spl deg/ grazing. Finally, there are some differences between the radar and video signals that suggest that microwave radar may be less sensitive than video techniques to relict foam not associated with active wave breaking. In general, the results indicate that radar is a very good detector of shallow water breaking waves and suggest that radar can be used for the measurement of the spatial and temporal variations of wave breaking.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2003.810695