Loading…
Localized systems coupled to small baths: From Anderson to Zeno
We investigate what happens if an Anderson localized system is coupled to a small bath, with a discrete spectrum, when the coupling between system and bath is specially chosen so as to never localize the bath. We find that the effect of the bath on localization in the system is a nonmonotonic functi...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-07, Vol.92 (1), Article 014203 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate what happens if an Anderson localized system is coupled to a small bath, with a discrete spectrum, when the coupling between system and bath is specially chosen so as to never localize the bath. We find that the effect of the bath on localization in the system is a nonmonotonic function of the coupling between system and bath. At weak couplings, the bath facilitates transport by allowing the system to "borrow" energy from the bath. But, above a certain coupling the bath produces localization because of an orthogonality catastrophe, whereby the bath "dresses" the system and hence suppresses the hopping matrix element. We call this last regime the regime of "Zeno localization" since the physics of this regime is akin to the quantum Zeno effect, where frequent measurements of the position of a particle impede its motion. We confirm our results by numerical exact diagonalization. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.92.014203 |