Loading…
Tuning Many-Body Interactions in Graphene: The Effects of Doping on Excitons and Carrier Lifetimes
The optical properties of graphene are strongly affected by electron-electron (e-e) and electron-hole (e-h) interactions. Here we tune these many-body interactions through varying the density of free charge carriers. Measurements from the infrared to the ultraviolet reveal significant changes in the...
Saved in:
Published in: | Physical review letters 2014-05, Vol.112 (20), Article 207401 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical properties of graphene are strongly affected by electron-electron (e-e) and electron-hole (e-h) interactions. Here we tune these many-body interactions through varying the density of free charge carriers. Measurements from the infrared to the ultraviolet reveal significant changes in the optical conductivity of graphene for both electron and hole doping. The shift, broadening, and modification in shape of the saddle-point exciton resonance reflect strong screening of the many-body interactions by the carriers, as well as changes in quasiparticle lifetimes. Ab initio calculations by the GW Bethe-Salpeter equation method, which take into account the modification of both the repulsive e-e and the attractive e-h interactions, provide excellent agreement with experiment. Understanding the optical properties and high-energy carrier dynamics of graphene over a wide range of doping is crucial for both fundamental graphene physics and for emerging applications of graphene in photonics. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.112.207401 |