Loading…

Constancy maximization based weight optimization in high dimensional model representation

This work focuses on the weight function optimization in high dimensional model representation (HDMR) via constancy maximization. There are a lot of circumstances where HDMR’s weight function becomes completely flexible in its factors. The univariate coordinate changes which can be constructed to pr...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2009-11, Vol.52 (3), p.435-459
Main Authors: Tunga, Burcu, Demiralp, Metin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work focuses on the weight function optimization in high dimensional model representation (HDMR) via constancy maximization. There are a lot of circumstances where HDMR’s weight function becomes completely flexible in its factors. The univariate coordinate changes which can be constructed to produce nonnegative factors in the integrands of HDMR component, are perhaps the most important ones of these cases. Here, the weight function is considered as the square of a linear combination of certain basis functions spanning an appropriately chosen Hilbert space. Then, the coefficients of these linear combinations are determined to maximize the HDMR’s constant term contribution to the function. Although the resulting equations are nonlinear we could have been able to approximate the solutions by using recently proven fluctuationlessness theorem on matrix representations appearing in the equations.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-009-9291-2