Loading…
Constancy maximization based weight optimization in high dimensional model representation
This work focuses on the weight function optimization in high dimensional model representation (HDMR) via constancy maximization. There are a lot of circumstances where HDMR’s weight function becomes completely flexible in its factors. The univariate coordinate changes which can be constructed to pr...
Saved in:
Published in: | Numerical algorithms 2009-11, Vol.52 (3), p.435-459 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work focuses on the weight function optimization in high dimensional model representation (HDMR) via constancy maximization. There are a lot of circumstances where HDMR’s weight function becomes completely flexible in its factors. The univariate coordinate changes which can be constructed to produce nonnegative factors in the integrands of HDMR component, are perhaps the most important ones of these cases. Here, the weight function is considered as the square of a linear combination of certain basis functions spanning an appropriately chosen Hilbert space. Then, the coefficients of these linear combinations are determined to maximize the HDMR’s constant term contribution to the function. Although the resulting equations are nonlinear we could have been able to approximate the solutions by using recently proven fluctuationlessness theorem on matrix representations appearing in the equations. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-009-9291-2 |