Loading…
Dualities near the horizon
A bstract In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix ( φ ), related to the coupling of scalars φ to vector field-strengths. In particular, this matrix enters the twisted self-duality con...
Saved in:
Published in: | The journal of high energy physics 2013-11, Vol.2013 (11), p.1-33, Article 56 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03 |
container_end_page | 33 |
container_issue | 11 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2013 |
creator | Ferrara, Sergio Marrani, Alessio Orazi, Emanuele Trigiante, Mario |
description | A
bstract
In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix
(
φ
), related to the coupling of scalars
φ
to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields.
In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the
= 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector
and the invariants of the corresponding symplectic representation
of the duality group
G
, whenever the scalar manifold is a symmetric space with
G
simple and
non-degenerate of type
E
7
.
At attractors with flat directions,
still depends on flat directions, but not
, defining the so-called Freudenthal dual of
itself. This allows for a universal expression of the symplectic vector field strengths in terms of
, in the near-horizon Bertotti-Robinson black hole geometry. |
doi_str_mv | 10.1007/JHEP11(2013)056 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770285846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770285846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</originalsourceid><addsrcrecordid>eNp1kEFLw0AQRhdRsFbPgqeCl3qIndnd7G6OUqtVCnrQ87JZpjYlTepuctBfb0I8FMHTDMP7PobH2CXCLQLo2fNy8Yo45YDiBlJ1xEYIPEuM1NnxwX7KzmLcAmCKGYzY1X3ryqIpKE4qcmHSbGiyqUPxXVfn7GTtykgXv3PM3h8Wb_Nlsnp5fJrfrRIvOTSJFJ4LnktE5Ib6G3kSUuXKo1CQO1DCZ06gwWyNwmsk0LlJU46KZA5izKZD7z7Uny3Fxu6K6KksXUV1Gy1qDdykRqoOvf6Dbus2VN13FlXKM660MB01Gygf6hgDre0-FDsXviyC7V3ZwZXtXdnOVZeAIRE7svqgcND7T-QHuONnYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652926738</pqid></control><display><type>article</type><title>Dualities near the horizon</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Ferrara, Sergio ; Marrani, Alessio ; Orazi, Emanuele ; Trigiante, Mario</creator><creatorcontrib>Ferrara, Sergio ; Marrani, Alessio ; Orazi, Emanuele ; Trigiante, Mario</creatorcontrib><description>A
bstract
In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix
(
φ
), related to the coupling of scalars
φ
to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields.
In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the
= 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector
and the invariants of the corresponding symplectic representation
of the duality group
G
, whenever the scalar manifold is a symmetric space with
G
simple and
non-degenerate of type
E
7
.
At attractors with flat directions,
still depends on flat directions, but not
, defining the so-called Freudenthal dual of
itself. This allows for a universal expression of the symplectic vector field strengths in terms of
, in the near-horizon Bertotti-Robinson black hole geometry.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP11(2013)056</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Charge ; Classical and Quantum Gravitation ; Elementary Particles ; Field strength ; Flats ; High energy physics ; Invariants ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scalars ; String Theory ; Vectors (mathematics)</subject><ispartof>The journal of high energy physics, 2013-11, Vol.2013 (11), p.1-33, Article 56</ispartof><rights>SISSA 2013</rights><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</citedby><cites>FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1652926738/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1652926738?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><creatorcontrib>Ferrara, Sergio</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Orazi, Emanuele</creatorcontrib><creatorcontrib>Trigiante, Mario</creatorcontrib><title>Dualities near the horizon</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix
(
φ
), related to the coupling of scalars
φ
to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields.
In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the
= 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector
and the invariants of the corresponding symplectic representation
of the duality group
G
, whenever the scalar manifold is a symmetric space with
G
simple and
non-degenerate of type
E
7
.
At attractors with flat directions,
still depends on flat directions, but not
, defining the so-called Freudenthal dual of
itself. This allows for a universal expression of the symplectic vector field strengths in terms of
, in the near-horizon Bertotti-Robinson black hole geometry.</description><subject>Asymptotic properties</subject><subject>Charge</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Field strength</subject><subject>Flats</subject><subject>High energy physics</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><subject>Vectors (mathematics)</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEFLw0AQRhdRsFbPgqeCl3qIndnd7G6OUqtVCnrQ87JZpjYlTepuctBfb0I8FMHTDMP7PobH2CXCLQLo2fNy8Yo45YDiBlJ1xEYIPEuM1NnxwX7KzmLcAmCKGYzY1X3ryqIpKE4qcmHSbGiyqUPxXVfn7GTtykgXv3PM3h8Wb_Nlsnp5fJrfrRIvOTSJFJ4LnktE5Ib6G3kSUuXKo1CQO1DCZ06gwWyNwmsk0LlJU46KZA5izKZD7z7Uny3Fxu6K6KksXUV1Gy1qDdykRqoOvf6Dbus2VN13FlXKM660MB01Gygf6hgDre0-FDsXviyC7V3ZwZXtXdnOVZeAIRE7svqgcND7T-QHuONnYg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Ferrara, Sergio</creator><creator>Marrani, Alessio</creator><creator>Orazi, Emanuele</creator><creator>Trigiante, Mario</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Dualities near the horizon</title><author>Ferrara, Sergio ; Marrani, Alessio ; Orazi, Emanuele ; Trigiante, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Charge</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Field strength</topic><topic>Flats</topic><topic>High energy physics</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrara, Sergio</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Orazi, Emanuele</creatorcontrib><creatorcontrib>Trigiante, Mario</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrara, Sergio</au><au>Marrani, Alessio</au><au>Orazi, Emanuele</au><au>Trigiante, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dualities near the horizon</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>2013</volume><issue>11</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>56</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix
(
φ
), related to the coupling of scalars
φ
to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields.
In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the
= 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector
and the invariants of the corresponding symplectic representation
of the duality group
G
, whenever the scalar manifold is a symmetric space with
G
simple and
non-degenerate of type
E
7
.
At attractors with flat directions,
still depends on flat directions, but not
, defining the so-called Freudenthal dual of
itself. This allows for a universal expression of the symplectic vector field strengths in terms of
, in the near-horizon Bertotti-Robinson black hole geometry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP11(2013)056</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2013-11, Vol.2013 (11), p.1-33, Article 56 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770285846 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Asymptotic properties Charge Classical and Quantum Gravitation Elementary Particles Field strength Flats High energy physics Invariants Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory Scalars String Theory Vectors (mathematics) |
title | Dualities near the horizon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dualities%20near%20the%20horizon&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Ferrara,%20Sergio&rft.date=2013-11-01&rft.volume=2013&rft.issue=11&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=56&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP11(2013)056&rft_dat=%3Cproquest_cross%3E1770285846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652926738&rft_id=info:pmid/&rfr_iscdi=true |