Loading…

Dualities near the horizon

A bstract In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix ( φ ), related to the coupling of scalars φ to vector field-strengths. In particular, this matrix enters the twisted self-duality con...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2013-11, Vol.2013 (11), p.1-33, Article 56
Main Authors: Ferrara, Sergio, Marrani, Alessio, Orazi, Emanuele, Trigiante, Mario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03
cites cdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03
container_end_page 33
container_issue 11
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Ferrara, Sergio
Marrani, Alessio
Orazi, Emanuele
Trigiante, Mario
description A bstract In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix ( φ ), related to the coupling of scalars φ to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields. In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the = 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector and the invariants of the corresponding symplectic representation of the duality group G , whenever the scalar manifold is a symmetric space with G simple and non-degenerate of type E 7 . At attractors with flat directions, still depends on flat directions, but not , defining the so-called Freudenthal dual of itself. This allows for a universal expression of the symplectic vector field strengths in terms of , in the near-horizon Bertotti-Robinson black hole geometry.
doi_str_mv 10.1007/JHEP11(2013)056
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770285846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770285846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</originalsourceid><addsrcrecordid>eNp1kEFLw0AQRhdRsFbPgqeCl3qIndnd7G6OUqtVCnrQ87JZpjYlTepuctBfb0I8FMHTDMP7PobH2CXCLQLo2fNy8Yo45YDiBlJ1xEYIPEuM1NnxwX7KzmLcAmCKGYzY1X3ryqIpKE4qcmHSbGiyqUPxXVfn7GTtykgXv3PM3h8Wb_Nlsnp5fJrfrRIvOTSJFJ4LnktE5Ib6G3kSUuXKo1CQO1DCZ06gwWyNwmsk0LlJU46KZA5izKZD7z7Uny3Fxu6K6KksXUV1Gy1qDdykRqoOvf6Dbus2VN13FlXKM660MB01Gygf6hgDre0-FDsXviyC7V3ZwZXtXdnOVZeAIRE7svqgcND7T-QHuONnYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652926738</pqid></control><display><type>article</type><title>Dualities near the horizon</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Ferrara, Sergio ; Marrani, Alessio ; Orazi, Emanuele ; Trigiante, Mario</creator><creatorcontrib>Ferrara, Sergio ; Marrani, Alessio ; Orazi, Emanuele ; Trigiante, Mario</creatorcontrib><description>A bstract In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix ( φ ), related to the coupling of scalars φ to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields. In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the = 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector and the invariants of the corresponding symplectic representation of the duality group G , whenever the scalar manifold is a symmetric space with G simple and non-degenerate of type E 7 . At attractors with flat directions, still depends on flat directions, but not , defining the so-called Freudenthal dual of itself. This allows for a universal expression of the symplectic vector field strengths in terms of , in the near-horizon Bertotti-Robinson black hole geometry.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP11(2013)056</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Charge ; Classical and Quantum Gravitation ; Elementary Particles ; Field strength ; Flats ; High energy physics ; Invariants ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scalars ; String Theory ; Vectors (mathematics)</subject><ispartof>The journal of high energy physics, 2013-11, Vol.2013 (11), p.1-33, Article 56</ispartof><rights>SISSA 2013</rights><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</citedby><cites>FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1652926738/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1652926738?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><creatorcontrib>Ferrara, Sergio</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Orazi, Emanuele</creatorcontrib><creatorcontrib>Trigiante, Mario</creatorcontrib><title>Dualities near the horizon</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix ( φ ), related to the coupling of scalars φ to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields. In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the = 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector and the invariants of the corresponding symplectic representation of the duality group G , whenever the scalar manifold is a symmetric space with G simple and non-degenerate of type E 7 . At attractors with flat directions, still depends on flat directions, but not , defining the so-called Freudenthal dual of itself. This allows for a universal expression of the symplectic vector field strengths in terms of , in the near-horizon Bertotti-Robinson black hole geometry.</description><subject>Asymptotic properties</subject><subject>Charge</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Field strength</subject><subject>Flats</subject><subject>High energy physics</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><subject>Vectors (mathematics)</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEFLw0AQRhdRsFbPgqeCl3qIndnd7G6OUqtVCnrQ87JZpjYlTepuctBfb0I8FMHTDMP7PobH2CXCLQLo2fNy8Yo45YDiBlJ1xEYIPEuM1NnxwX7KzmLcAmCKGYzY1X3ryqIpKE4qcmHSbGiyqUPxXVfn7GTtykgXv3PM3h8Wb_Nlsnp5fJrfrRIvOTSJFJ4LnktE5Ib6G3kSUuXKo1CQO1DCZ06gwWyNwmsk0LlJU46KZA5izKZD7z7Uny3Fxu6K6KksXUV1Gy1qDdykRqoOvf6Dbus2VN13FlXKM660MB01Gygf6hgDre0-FDsXviyC7V3ZwZXtXdnOVZeAIRE7svqgcND7T-QHuONnYg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Ferrara, Sergio</creator><creator>Marrani, Alessio</creator><creator>Orazi, Emanuele</creator><creator>Trigiante, Mario</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Dualities near the horizon</title><author>Ferrara, Sergio ; Marrani, Alessio ; Orazi, Emanuele ; Trigiante, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Charge</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Field strength</topic><topic>Flats</topic><topic>High energy physics</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrara, Sergio</creatorcontrib><creatorcontrib>Marrani, Alessio</creatorcontrib><creatorcontrib>Orazi, Emanuele</creatorcontrib><creatorcontrib>Trigiante, Mario</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrara, Sergio</au><au>Marrani, Alessio</au><au>Orazi, Emanuele</au><au>Trigiante, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dualities near the horizon</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>2013</volume><issue>11</issue><spage>1</spage><epage>33</epage><pages>1-33</pages><artnum>56</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract In 4-dimensional supergravity theories, covariant under symplectic electricmagnetic duality rotations, a significant role is played by the symplectic matrix ( φ ), related to the coupling of scalars φ to vector field-strengths. In particular, this matrix enters the twisted self-duality condition for 2-form field strengths in the symplectic formulation of generalized Maxwell equations in the presence of scalar fields. In this investigation, we compute several properties of this matrix in relation to the attractor mechanism of extremal (asymptotically flat) black holes. At the attractor points with no flat directions (as in the = 2 BPS case), this matrix enjoys a universal form in terms of the dyonic charge vector and the invariants of the corresponding symplectic representation of the duality group G , whenever the scalar manifold is a symmetric space with G simple and non-degenerate of type E 7 . At attractors with flat directions, still depends on flat directions, but not , defining the so-called Freudenthal dual of itself. This allows for a universal expression of the symplectic vector field strengths in terms of , in the near-horizon Bertotti-Robinson black hole geometry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP11(2013)056</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-11, Vol.2013 (11), p.1-33, Article 56
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770285846
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Asymptotic properties
Charge
Classical and Quantum Gravitation
Elementary Particles
Field strength
Flats
High energy physics
Invariants
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Scalars
String Theory
Vectors (mathematics)
title Dualities near the horizon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dualities%20near%20the%20horizon&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Ferrara,%20Sergio&rft.date=2013-11-01&rft.volume=2013&rft.issue=11&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.artnum=56&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP11(2013)056&rft_dat=%3Cproquest_cross%3E1770285846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-43c232b411128ec420ece346b6c1360ba063c9a31819f13c71e07b855216e4b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652926738&rft_id=info:pmid/&rfr_iscdi=true