Loading…

Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4

We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy letters 2015-10, Vol.41 (10), p.562-574
Main Authors: Molkov, S. V., Lutovinov, A. A., Falanga, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233
cites cdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233
container_end_page 574
container_issue 10
container_start_page 562
container_title Astronomy letters
container_volume 41
creator Molkov, S. V.
Lutovinov, A. A.
Falanga, M.
description We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value P sup = 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period Ṗ orb / P orb = (1.21 ± 0.07) × 10 −6 yr −1 has been shown to be higher than has been expected previously.
doi_str_mv 10.1134/S1063773715100047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770287155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770287155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</originalsourceid><addsrcrecordid>eNqNkclKxEAQhhtRcFwewFvAi5doVy_pzlHGFSIKjuAtdDLVY4ZsdifCvL0dxoMogqda_u8vqCpCToCeA3Bx8Qw04UpxBRIopULtkBnIhMWJVnw35EGOJ32fHHi_DkjKOZ2Rpysc0DVVa4aqa6PORr1xppmafqqyrl3Fi0BEH8ZVpqjqathMwvCG0WvszCbqx9obF2UP89AQR2TPmtrj8Vc8JC8314v5XZw93t7PL7O4FEwOcYqol2nJtWZGJqgNBWkFlLjk0piiRChAIgrKrdbCykIU1lLNmIKUWcb5ITnbzu1d9z6iH_Km8iXWtWmxG30OSlGmwznkP1CmEiV1mgT09Ae67kbXhkUminGpJWWBgi1Vus57hzbvXdUYt8mB5tM78l_vCB629fjAtit03yb_afoEw86JhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722358502</pqid></control><display><type>article</type><title>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</title><source>Springer Nature</source><creator>Molkov, S. V. ; Lutovinov, A. A. ; Falanga, M.</creator><creatorcontrib>Molkov, S. V. ; Lutovinov, A. A. ; Falanga, M.</creatorcontrib><description>We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value P sup = 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period Ṗ orb / P orb = (1.21 ± 0.07) × 10 −6 yr −1 has been shown to be higher than has been expected previously.</description><identifier>ISSN: 1063-7737</identifier><identifier>EISSN: 1562-6873</identifier><identifier>DOI: 10.1134/S1063773715100047</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accretion disks ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Derivatives ; Eclipses ; Historic ; Intervals ; Mathematical models ; Observations and Techniques ; Orbitals ; Physics ; Physics and Astronomy ; Precession ; Pulsars ; X-ray astronomy ; X-rays</subject><ispartof>Astronomy letters, 2015-10, Vol.41 (10), p.562-574</ispartof><rights>Pleiades Publishing, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</citedby><cites>FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Molkov, S. V.</creatorcontrib><creatorcontrib>Lutovinov, A. A.</creatorcontrib><creatorcontrib>Falanga, M.</creatorcontrib><title>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</title><title>Astronomy letters</title><addtitle>Astron. Lett</addtitle><description>We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value P sup = 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period Ṗ orb / P orb = (1.21 ± 0.07) × 10 −6 yr −1 has been shown to be higher than has been expected previously.</description><subject>Accretion disks</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Derivatives</subject><subject>Eclipses</subject><subject>Historic</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Observations and Techniques</subject><subject>Orbitals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Precession</subject><subject>Pulsars</subject><subject>X-ray astronomy</subject><subject>X-rays</subject><issn>1063-7737</issn><issn>1562-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkclKxEAQhhtRcFwewFvAi5doVy_pzlHGFSIKjuAtdDLVY4ZsdifCvL0dxoMogqda_u8vqCpCToCeA3Bx8Qw04UpxBRIopULtkBnIhMWJVnw35EGOJ32fHHi_DkjKOZ2Rpysc0DVVa4aqa6PORr1xppmafqqyrl3Fi0BEH8ZVpqjqathMwvCG0WvszCbqx9obF2UP89AQR2TPmtrj8Vc8JC8314v5XZw93t7PL7O4FEwOcYqol2nJtWZGJqgNBWkFlLjk0piiRChAIgrKrdbCykIU1lLNmIKUWcb5ITnbzu1d9z6iH_Km8iXWtWmxG30OSlGmwznkP1CmEiV1mgT09Ae67kbXhkUminGpJWWBgi1Vus57hzbvXdUYt8mB5tM78l_vCB629fjAtit03yb_afoEw86JhA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Molkov, S. V.</creator><creator>Lutovinov, A. A.</creator><creator>Falanga, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20151001</creationdate><title>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</title><author>Molkov, S. V. ; Lutovinov, A. A. ; Falanga, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accretion disks</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Derivatives</topic><topic>Eclipses</topic><topic>Historic</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Observations and Techniques</topic><topic>Orbitals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Precession</topic><topic>Pulsars</topic><topic>X-ray astronomy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molkov, S. V.</creatorcontrib><creatorcontrib>Lutovinov, A. A.</creatorcontrib><creatorcontrib>Falanga, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Astronomy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molkov, S. V.</au><au>Lutovinov, A. A.</au><au>Falanga, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</atitle><jtitle>Astronomy letters</jtitle><stitle>Astron. Lett</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>41</volume><issue>10</issue><spage>562</spage><epage>574</epage><pages>562-574</pages><issn>1063-7737</issn><eissn>1562-6873</eissn><abstract>We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value P sup = 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period Ṗ orb / P orb = (1.21 ± 0.07) × 10 −6 yr −1 has been shown to be higher than has been expected previously.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063773715100047</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-7737
ispartof Astronomy letters, 2015-10, Vol.41 (10), p.562-574
issn 1063-7737
1562-6873
language eng
recordid cdi_proquest_miscellaneous_1770287155
source Springer Nature
subjects Accretion disks
Astronomy
Astrophysics
Astrophysics and Astroparticles
Derivatives
Eclipses
Historic
Intervals
Mathematical models
Observations and Techniques
Orbitals
Physics
Physics and Astronomy
Precession
Pulsars
X-ray astronomy
X-rays
title Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20parameters%20of%20Long-Term%20variability%20of%20the%20X-ray%20pulsar%20LMC%20X-4&rft.jtitle=Astronomy%20letters&rft.au=Molkov,%20S.%20V.&rft.date=2015-10-01&rft.volume=41&rft.issue=10&rft.spage=562&rft.epage=574&rft.pages=562-574&rft.issn=1063-7737&rft.eissn=1562-6873&rft_id=info:doi/10.1134/S1063773715100047&rft_dat=%3Cproquest_cross%3E1770287155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722358502&rft_id=info:pmid/&rfr_iscdi=true