Loading…
Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4
We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation...
Saved in:
Published in: | Astronomy letters 2015-10, Vol.41 (10), p.562-574 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233 |
container_end_page | 574 |
container_issue | 10 |
container_start_page | 562 |
container_title | Astronomy letters |
container_volume | 41 |
creator | Molkov, S. V. Lutovinov, A. A. Falanga, M. |
description | We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value
P
sup
= 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period
Ṗ
orb
/
P
orb
= (1.21 ± 0.07) × 10
−6
yr
−1
has been shown to be higher than has been expected previously. |
doi_str_mv | 10.1134/S1063773715100047 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770287155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770287155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</originalsourceid><addsrcrecordid>eNqNkclKxEAQhhtRcFwewFvAi5doVy_pzlHGFSIKjuAtdDLVY4ZsdifCvL0dxoMogqda_u8vqCpCToCeA3Bx8Qw04UpxBRIopULtkBnIhMWJVnw35EGOJ32fHHi_DkjKOZ2Rpysc0DVVa4aqa6PORr1xppmafqqyrl3Fi0BEH8ZVpqjqathMwvCG0WvszCbqx9obF2UP89AQR2TPmtrj8Vc8JC8314v5XZw93t7PL7O4FEwOcYqol2nJtWZGJqgNBWkFlLjk0piiRChAIgrKrdbCykIU1lLNmIKUWcb5ITnbzu1d9z6iH_Km8iXWtWmxG30OSlGmwznkP1CmEiV1mgT09Ae67kbXhkUminGpJWWBgi1Vus57hzbvXdUYt8mB5tM78l_vCB629fjAtit03yb_afoEw86JhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722358502</pqid></control><display><type>article</type><title>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</title><source>Springer Nature</source><creator>Molkov, S. V. ; Lutovinov, A. A. ; Falanga, M.</creator><creatorcontrib>Molkov, S. V. ; Lutovinov, A. A. ; Falanga, M.</creatorcontrib><description>We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value
P
sup
= 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period
Ṗ
orb
/
P
orb
= (1.21 ± 0.07) × 10
−6
yr
−1
has been shown to be higher than has been expected previously.</description><identifier>ISSN: 1063-7737</identifier><identifier>EISSN: 1562-6873</identifier><identifier>DOI: 10.1134/S1063773715100047</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accretion disks ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Derivatives ; Eclipses ; Historic ; Intervals ; Mathematical models ; Observations and Techniques ; Orbitals ; Physics ; Physics and Astronomy ; Precession ; Pulsars ; X-ray astronomy ; X-rays</subject><ispartof>Astronomy letters, 2015-10, Vol.41 (10), p.562-574</ispartof><rights>Pleiades Publishing, Inc. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</citedby><cites>FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Molkov, S. V.</creatorcontrib><creatorcontrib>Lutovinov, A. A.</creatorcontrib><creatorcontrib>Falanga, M.</creatorcontrib><title>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</title><title>Astronomy letters</title><addtitle>Astron. Lett</addtitle><description>We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value
P
sup
= 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period
Ṗ
orb
/
P
orb
= (1.21 ± 0.07) × 10
−6
yr
−1
has been shown to be higher than has been expected previously.</description><subject>Accretion disks</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Derivatives</subject><subject>Eclipses</subject><subject>Historic</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Observations and Techniques</subject><subject>Orbitals</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Precession</subject><subject>Pulsars</subject><subject>X-ray astronomy</subject><subject>X-rays</subject><issn>1063-7737</issn><issn>1562-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkclKxEAQhhtRcFwewFvAi5doVy_pzlHGFSIKjuAtdDLVY4ZsdifCvL0dxoMogqda_u8vqCpCToCeA3Bx8Qw04UpxBRIopULtkBnIhMWJVnw35EGOJ32fHHi_DkjKOZ2Rpysc0DVVa4aqa6PORr1xppmafqqyrl3Fi0BEH8ZVpqjqathMwvCG0WvszCbqx9obF2UP89AQR2TPmtrj8Vc8JC8314v5XZw93t7PL7O4FEwOcYqol2nJtWZGJqgNBWkFlLjk0piiRChAIgrKrdbCykIU1lLNmIKUWcb5ITnbzu1d9z6iH_Km8iXWtWmxG30OSlGmwznkP1CmEiV1mgT09Ae67kbXhkUminGpJWWBgi1Vus57hzbvXdUYt8mB5tM78l_vCB629fjAtit03yb_afoEw86JhA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Molkov, S. V.</creator><creator>Lutovinov, A. A.</creator><creator>Falanga, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20151001</creationdate><title>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</title><author>Molkov, S. V. ; Lutovinov, A. A. ; Falanga, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accretion disks</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Derivatives</topic><topic>Eclipses</topic><topic>Historic</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Observations and Techniques</topic><topic>Orbitals</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Precession</topic><topic>Pulsars</topic><topic>X-ray astronomy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molkov, S. V.</creatorcontrib><creatorcontrib>Lutovinov, A. A.</creatorcontrib><creatorcontrib>Falanga, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Astronomy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molkov, S. V.</au><au>Lutovinov, A. A.</au><au>Falanga, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4</atitle><jtitle>Astronomy letters</jtitle><stitle>Astron. Lett</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>41</volume><issue>10</issue><spage>562</spage><epage>574</epage><pages>562-574</pages><issn>1063-7737</issn><eissn>1562-6873</eissn><abstract>We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value
P
sup
= 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period
Ṗ
orb
/
P
orb
= (1.21 ± 0.07) × 10
−6
yr
−1
has been shown to be higher than has been expected previously.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063773715100047</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7737 |
ispartof | Astronomy letters, 2015-10, Vol.41 (10), p.562-574 |
issn | 1063-7737 1562-6873 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770287155 |
source | Springer Nature |
subjects | Accretion disks Astronomy Astrophysics Astrophysics and Astroparticles Derivatives Eclipses Historic Intervals Mathematical models Observations and Techniques Orbitals Physics Physics and Astronomy Precession Pulsars X-ray astronomy X-rays |
title | Determination of parameters of Long-Term variability of the X-ray pulsar LMC X-4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20parameters%20of%20Long-Term%20variability%20of%20the%20X-ray%20pulsar%20LMC%20X-4&rft.jtitle=Astronomy%20letters&rft.au=Molkov,%20S.%20V.&rft.date=2015-10-01&rft.volume=41&rft.issue=10&rft.spage=562&rft.epage=574&rft.pages=562-574&rft.issn=1063-7737&rft.eissn=1562-6873&rft_id=info:doi/10.1134/S1063773715100047&rft_dat=%3Cproquest_cross%3E1770287155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-9ee8d9c3882a56e8a015f41ced35aabce1b15ee403f884f5b4bff08227192f233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722358502&rft_id=info:pmid/&rfr_iscdi=true |