Loading…

Compression of trajectory data: a comprehensive evaluation and new approach

GPS-equipped mobile devices such as smart phones and in-car navigation units are collecting enormous amounts of spatial and temporal information that traces a moving object’s path. The exponential increase in the amount of such trajectory data has caused three major problems. First, transmission of...

Full description

Saved in:
Bibliographic Details
Published in:GeoInformatica 2014-07, Vol.18 (3), p.435-460
Main Authors: Muckell, Jonathan, Olsen, Paul W., Hwang, Jeong-Hyon, Lawson, Catherine T., Ravi, S. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73
cites cdi_FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73
container_end_page 460
container_issue 3
container_start_page 435
container_title GeoInformatica
container_volume 18
creator Muckell, Jonathan
Olsen, Paul W.
Hwang, Jeong-Hyon
Lawson, Catherine T.
Ravi, S. S.
description GPS-equipped mobile devices such as smart phones and in-car navigation units are collecting enormous amounts of spatial and temporal information that traces a moving object’s path. The exponential increase in the amount of such trajectory data has caused three major problems. First, transmission of large amounts of data is expensive and time-consuming. Second, queries on large amounts of trajectory data require computationally expensive operations to extract useful patterns and information. Third, GPS trajectories often contain large amounts of redundant data that waste storage and cause increased disk I/O time. These issues can be addressed by algorithms that reduce the size of trajectory data. A key requirement for these algorithms is to minimize the loss of information essential to location-based applications. This paper presents a new compression method called SQUISH-E (Spatial QUalIty Simplification Heuristic - Extended) that provides improved run-time performance and usability. A comprehensive comparison of SQUISH-E with other algorithms is carried out through an empirical study across three types of real-world datasets and a variety of error metrics.
doi_str_mv 10.1007/s10707-013-0184-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770289102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377776660</galeid><sourcerecordid>A377776660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhisEEmPwA7hV4sKlw0mWpuU2TXyJSVzgHGWpu3XqkpF0oP17XMoBIZEoSmS_j-PkTZJLBhMGoG4iAwUqAyZoFdMMjpIRk0pkKufTYzoLCuZMydPkLMYNAEgCRsnz3G93AWNsvEt9nXbBbNB2PhzSynTmNjWp_Vas0cXmA1P8MO3edL3cuCp1-Jma3S54Y9fnyUlt2ogXP_s4ebu_e50_ZouXh6f5bJHZqZx2WVVVsrCFLCGvOLI6Z2VRlUKC5awUwtZLK_q0XeYFAghqveD0PLkEThklxsn1UJeufd9j7PS2iRbb1jj0-6iZUsCLkgEn6dUf6cbvg6PuNJNcFqUA0RecDKqVaVE3rvb0DZZmhdvGeod1Q_GZUDTyPAcC2ADY4GMMWOtdaLYmHDQD3fuhBz80-aF7P3TP8IGJpHUrDL9a-Rf6Ai_Hi4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525893037</pqid></control><display><type>article</type><title>Compression of trajectory data: a comprehensive evaluation and new approach</title><source>Springer Link</source><creator>Muckell, Jonathan ; Olsen, Paul W. ; Hwang, Jeong-Hyon ; Lawson, Catherine T. ; Ravi, S. S.</creator><creatorcontrib>Muckell, Jonathan ; Olsen, Paul W. ; Hwang, Jeong-Hyon ; Lawson, Catherine T. ; Ravi, S. S.</creatorcontrib><description>GPS-equipped mobile devices such as smart phones and in-car navigation units are collecting enormous amounts of spatial and temporal information that traces a moving object’s path. The exponential increase in the amount of such trajectory data has caused three major problems. First, transmission of large amounts of data is expensive and time-consuming. Second, queries on large amounts of trajectory data require computationally expensive operations to extract useful patterns and information. Third, GPS trajectories often contain large amounts of redundant data that waste storage and cause increased disk I/O time. These issues can be addressed by algorithms that reduce the size of trajectory data. A key requirement for these algorithms is to minimize the loss of information essential to location-based applications. This paper presents a new compression method called SQUISH-E (Spatial QUalIty Simplification Heuristic - Extended) that provides improved run-time performance and usability. A comprehensive comparison of SQUISH-E with other algorithms is carried out through an empirical study across three types of real-world datasets and a variety of error metrics.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-013-0184-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Compressing ; Computer Science ; Data analysis ; Data Structures and Information Theory ; Disks ; Earth and Environmental Science ; Error analysis ; Geographic information systems ; Geographical Information Systems/Cartography ; Geography ; Global positioning systems ; GPS ; Information Storage and Retrieval ; Mobile communication systems ; Mobile communications networks ; Multimedia Information Systems ; Queries ; Run time (computers) ; Trajectories ; Waste storage</subject><ispartof>GeoInformatica, 2014-07, Vol.18 (3), p.435-460</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73</citedby><cites>FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Muckell, Jonathan</creatorcontrib><creatorcontrib>Olsen, Paul W.</creatorcontrib><creatorcontrib>Hwang, Jeong-Hyon</creatorcontrib><creatorcontrib>Lawson, Catherine T.</creatorcontrib><creatorcontrib>Ravi, S. S.</creatorcontrib><title>Compression of trajectory data: a comprehensive evaluation and new approach</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>GPS-equipped mobile devices such as smart phones and in-car navigation units are collecting enormous amounts of spatial and temporal information that traces a moving object’s path. The exponential increase in the amount of such trajectory data has caused three major problems. First, transmission of large amounts of data is expensive and time-consuming. Second, queries on large amounts of trajectory data require computationally expensive operations to extract useful patterns and information. Third, GPS trajectories often contain large amounts of redundant data that waste storage and cause increased disk I/O time. These issues can be addressed by algorithms that reduce the size of trajectory data. A key requirement for these algorithms is to minimize the loss of information essential to location-based applications. This paper presents a new compression method called SQUISH-E (Spatial QUalIty Simplification Heuristic - Extended) that provides improved run-time performance and usability. A comprehensive comparison of SQUISH-E with other algorithms is carried out through an empirical study across three types of real-world datasets and a variety of error metrics.</description><subject>Algorithms</subject><subject>Compressing</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data Structures and Information Theory</subject><subject>Disks</subject><subject>Earth and Environmental Science</subject><subject>Error analysis</subject><subject>Geographic information systems</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Information Storage and Retrieval</subject><subject>Mobile communication systems</subject><subject>Mobile communications networks</subject><subject>Multimedia Information Systems</subject><subject>Queries</subject><subject>Run time (computers)</subject><subject>Trajectories</subject><subject>Waste storage</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhisEEmPwA7hV4sKlw0mWpuU2TXyJSVzgHGWpu3XqkpF0oP17XMoBIZEoSmS_j-PkTZJLBhMGoG4iAwUqAyZoFdMMjpIRk0pkKufTYzoLCuZMydPkLMYNAEgCRsnz3G93AWNsvEt9nXbBbNB2PhzSynTmNjWp_Vas0cXmA1P8MO3edL3cuCp1-Jma3S54Y9fnyUlt2ogXP_s4ebu_e50_ZouXh6f5bJHZqZx2WVVVsrCFLCGvOLI6Z2VRlUKC5awUwtZLK_q0XeYFAghqveD0PLkEThklxsn1UJeufd9j7PS2iRbb1jj0-6iZUsCLkgEn6dUf6cbvg6PuNJNcFqUA0RecDKqVaVE3rvb0DZZmhdvGeod1Q_GZUDTyPAcC2ADY4GMMWOtdaLYmHDQD3fuhBz80-aF7P3TP8IGJpHUrDL9a-Rf6Ai_Hi4Q</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Muckell, Jonathan</creator><creator>Olsen, Paul W.</creator><creator>Hwang, Jeong-Hyon</creator><creator>Lawson, Catherine T.</creator><creator>Ravi, S. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>Compression of trajectory data: a comprehensive evaluation and new approach</title><author>Muckell, Jonathan ; Olsen, Paul W. ; Hwang, Jeong-Hyon ; Lawson, Catherine T. ; Ravi, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Compressing</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data Structures and Information Theory</topic><topic>Disks</topic><topic>Earth and Environmental Science</topic><topic>Error analysis</topic><topic>Geographic information systems</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Information Storage and Retrieval</topic><topic>Mobile communication systems</topic><topic>Mobile communications networks</topic><topic>Multimedia Information Systems</topic><topic>Queries</topic><topic>Run time (computers)</topic><topic>Trajectories</topic><topic>Waste storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muckell, Jonathan</creatorcontrib><creatorcontrib>Olsen, Paul W.</creatorcontrib><creatorcontrib>Hwang, Jeong-Hyon</creatorcontrib><creatorcontrib>Lawson, Catherine T.</creatorcontrib><creatorcontrib>Ravi, S. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muckell, Jonathan</au><au>Olsen, Paul W.</au><au>Hwang, Jeong-Hyon</au><au>Lawson, Catherine T.</au><au>Ravi, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compression of trajectory data: a comprehensive evaluation and new approach</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><spage>435</spage><epage>460</epage><pages>435-460</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>GPS-equipped mobile devices such as smart phones and in-car navigation units are collecting enormous amounts of spatial and temporal information that traces a moving object’s path. The exponential increase in the amount of such trajectory data has caused three major problems. First, transmission of large amounts of data is expensive and time-consuming. Second, queries on large amounts of trajectory data require computationally expensive operations to extract useful patterns and information. Third, GPS trajectories often contain large amounts of redundant data that waste storage and cause increased disk I/O time. These issues can be addressed by algorithms that reduce the size of trajectory data. A key requirement for these algorithms is to minimize the loss of information essential to location-based applications. This paper presents a new compression method called SQUISH-E (Spatial QUalIty Simplification Heuristic - Extended) that provides improved run-time performance and usability. A comprehensive comparison of SQUISH-E with other algorithms is carried out through an empirical study across three types of real-world datasets and a variety of error metrics.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10707-013-0184-0</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1384-6175
ispartof GeoInformatica, 2014-07, Vol.18 (3), p.435-460
issn 1384-6175
1573-7624
language eng
recordid cdi_proquest_miscellaneous_1770289102
source Springer Link
subjects Algorithms
Compressing
Computer Science
Data analysis
Data Structures and Information Theory
Disks
Earth and Environmental Science
Error analysis
Geographic information systems
Geographical Information Systems/Cartography
Geography
Global positioning systems
GPS
Information Storage and Retrieval
Mobile communication systems
Mobile communications networks
Multimedia Information Systems
Queries
Run time (computers)
Trajectories
Waste storage
title Compression of trajectory data: a comprehensive evaluation and new approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compression%20of%20trajectory%20data:%20a%20comprehensive%20evaluation%20and%20new%20approach&rft.jtitle=GeoInformatica&rft.au=Muckell,%20Jonathan&rft.date=2014-07-01&rft.volume=18&rft.issue=3&rft.spage=435&rft.epage=460&rft.pages=435-460&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-013-0184-0&rft_dat=%3Cgale_proqu%3EA377776660%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-ddd58c85906d2e1f6198d9350c21933cfbc3c859cb68e003138821075b02c3c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525893037&rft_id=info:pmid/&rft_galeid=A377776660&rfr_iscdi=true