Loading…

Piezoresistance effect in n-type silicon: from bulk to nanowires

The first order piezoresistance coefficients are examined in the n-type silicon structures with different dimensionality of electron gas: bulk crystal, quantum film (well) and quantum wire. The detail research involves quantum kinetic approach to calculation of the kinetic coefficients (conductivity...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational electronics 2014-06, Vol.13 (2), p.515-528
Main Authors: Kozlovskiy, S. I., Sharan, N. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The first order piezoresistance coefficients are examined in the n-type silicon structures with different dimensionality of electron gas: bulk crystal, quantum film (well) and quantum wire. The detail research involves quantum kinetic approach to calculation of the kinetic coefficients (conductivity, mobility, concentration) of electrons in the strained and unstrained states. As scattering system were adopted ionized impurities, longitudinal acoustic phonons and surface roughness. Detailed studies have been carried out for dependences of electron mobility and piezoresistance coefficients on confining dimensions. An alternative explanation is proposed for origin of the giant piezoresistance effect in n-type silicon nanostructures. Comparison of the obtained results shows not only qualitative but even sufficient quantitative agreement with experimental data.
ISSN:1569-8025
1572-8137
DOI:10.1007/s10825-014-0563-2