Loading…
Catalytic Coating for Reduced Coke Formation in Steam Cracking Reactors
A novel catalytic coating that converts coke to carbon oxides through a reaction with steam has been developed. Several coating formulations were tested in a jet-stirred reactor setup, and the best performing formulation was further evaluated in a pilot plant setup. Application of the coating during...
Saved in:
Published in: | Industrial & engineering chemistry research 2015-10, Vol.54 (39), p.9525-9535 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel catalytic coating that converts coke to carbon oxides through a reaction with steam has been developed. Several coating formulations were tested in a jet-stirred reactor setup, and the best performing formulation was further evaluated in a pilot plant setup. Application of the coating during steam cracking of ethane at industrially relevant conditions resulted in a reduction of the asymptotic coking rate by 76%. The coating activity remained constant over several coking/decoking cycles. Coupled furnace-reactor run length simulations of an industrial ethane cracking unit were performed and resulted in an increase of the run length by a factor of 6. However, the simulated CO2 yield is higher than the design value of a typical caustic tower. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.5b02263 |