Loading…
Convergence theorem for the Haar wavelet based discretization method
The accuracy issues of Haar wavelet method are studied. The order of convergence as well as error bound of the Haar wavelet method is derived for general nth order ODE. The Richardson extrapolation method is utilized for improving the accuracy of the solution. A number of model problems are examined...
Saved in:
Published in: | Composite structures 2015-08, Vol.126, p.227-232 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The accuracy issues of Haar wavelet method are studied. The order of convergence as well as error bound of the Haar wavelet method is derived for general nth order ODE. The Richardson extrapolation method is utilized for improving the accuracy of the solution. A number of model problems are examined. The numerically estimated order of convergence has been found in agreement with convergence theorem results in the case of all model problems considered. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2015.02.050 |