Loading…

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave‐induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with res...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2015-09, Vol.120 (9), p.7357-7373
Main Authors: Ni, Binbin, Cao, Xing, Zou, Zhengyang, Zhou, Chen, Gu, Xudong, Bortnik, Jacob, Zhang, Jichun, Fu, Song, Zhao, Zhengyu, Shi, Run, Xie, Lun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43
cites cdi_FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43
container_end_page 7373
container_issue 9
container_start_page 7357
container_title Journal of geophysical research. Space physics
container_volume 120
creator Ni, Binbin
Cao, Xing
Zou, Zhengyang
Zhou, Chen
Gu, Xudong
Bortnik, Jacob
Zhang, Jichun
Fu, Song
Zhao, Zhengyu
Shi, Run
Xie, Lun
description To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave‐induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+‐band EMIC waves dominate the scattering losses of ~1–4 MeV outer zone relativistic electrons, it is He+‐band and O+‐band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave‐induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi‐parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+‐band EMIC wave scattering rates at pitch angles  ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from
doi_str_mv 10.1002/2015JA021466
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770298852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770298852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43</originalsourceid><addsrcrecordid>eNqNkctuFDEQRVsIJKIkOz7AEhsWdOK33cvRKExegDQKYmm5nWrk4GkH251k-HrcGYIQCxRvqlw-t6yr2zRvCD4iGNNjiok4X2BKuJQvmj1KZNd2HNOXTz3T-HVzmPMNrkfXERF7zcMachztWFB2thRIfvyG4oDiVHv0M46AEgRb_J3PxTsEAVxJccyo36LNFIrv7XiNTj6eLdG9vYOM5muCXJ_mrU88CjFnVPwG5o8C5IPm1WBDhsPfdb_58uHkannaXn5enS0Xl60TQquWOOCd0II8GqP8mlDRUQXMcmGdg4EOWg5C6s4KJ0Bz0veM9VZRJYUAzvabd7u9tyn-mCAXs_HZQQh2hDhlQ5TCtNNa0GegjGoilJ7Rt_-gN3FKYzVSKSoZ4VzN1Psd5VJ1n2Awt8lvbNoags0cmvk7tIqzHX7vA2z_y5rz1XohKGaqqtqdqgYED39UNn03UjElzNdPK9ORi1Mt1tJ07BffPKZB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726314472</pqid></control><display><type>article</type><title>Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ni, Binbin ; Cao, Xing ; Zou, Zhengyang ; Zhou, Chen ; Gu, Xudong ; Bortnik, Jacob ; Zhang, Jichun ; Fu, Song ; Zhao, Zhengyu ; Shi, Run ; Xie, Lun</creator><creatorcontrib>Ni, Binbin ; Cao, Xing ; Zou, Zhengyang ; Zhou, Chen ; Gu, Xudong ; Bortnik, Jacob ; Zhang, Jichun ; Fu, Song ; Zhao, Zhengyu ; Shi, Run ; Xie, Lun</creatorcontrib><description>To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave‐induced resonant scattering of outer zone relativistic (&gt;0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+‐band EMIC waves dominate the scattering losses of ~1–4 MeV outer zone relativistic electrons, it is He+‐band and O+‐band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave‐induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi‐parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+‐band EMIC wave scattering rates at pitch angles &lt; ~40° for electrons &gt; ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from &lt;1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90° remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to “top‐hat.” Overall, H+‐band and He+‐band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1–2 MeV. In contrast, the presence of O+‐band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5–10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics. Key Points Obliquity of EMIC waves can reduce the scattering efficiency EMIC wave scattering can cause the top‐hot electron distribution Different EMIC bands are important for RB electrons at different energies</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2015JA021466</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amplitudes ; Decay ; Diffusion ; Dynamics ; electron loss time scales ; Electrons ; EMIC waves ; Geophysics ; outer radiation belt ; Pitch angle ; relativistic electrons ; resonant wave-particle interactions ; Resultants ; Scattering ; Time ; Wave scattering ; Waves</subject><ispartof>Journal of geophysical research. Space physics, 2015-09, Vol.120 (9), p.7357-7373</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43</citedby><cites>FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43</cites><orcidid>0000-0003-1273-4573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ni, Binbin</creatorcontrib><creatorcontrib>Cao, Xing</creatorcontrib><creatorcontrib>Zou, Zhengyang</creatorcontrib><creatorcontrib>Zhou, Chen</creatorcontrib><creatorcontrib>Gu, Xudong</creatorcontrib><creatorcontrib>Bortnik, Jacob</creatorcontrib><creatorcontrib>Zhang, Jichun</creatorcontrib><creatorcontrib>Fu, Song</creatorcontrib><creatorcontrib>Zhao, Zhengyu</creatorcontrib><creatorcontrib>Shi, Run</creatorcontrib><creatorcontrib>Xie, Lun</creatorcontrib><title>Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave‐induced resonant scattering of outer zone relativistic (&gt;0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+‐band EMIC waves dominate the scattering losses of ~1–4 MeV outer zone relativistic electrons, it is He+‐band and O+‐band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave‐induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi‐parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+‐band EMIC wave scattering rates at pitch angles &lt; ~40° for electrons &gt; ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from &lt;1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90° remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to “top‐hat.” Overall, H+‐band and He+‐band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1–2 MeV. In contrast, the presence of O+‐band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5–10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics. Key Points Obliquity of EMIC waves can reduce the scattering efficiency EMIC wave scattering can cause the top‐hot electron distribution Different EMIC bands are important for RB electrons at different energies</description><subject>Amplitudes</subject><subject>Decay</subject><subject>Diffusion</subject><subject>Dynamics</subject><subject>electron loss time scales</subject><subject>Electrons</subject><subject>EMIC waves</subject><subject>Geophysics</subject><subject>outer radiation belt</subject><subject>Pitch angle</subject><subject>relativistic electrons</subject><subject>resonant wave-particle interactions</subject><subject>Resultants</subject><subject>Scattering</subject><subject>Time</subject><subject>Wave scattering</subject><subject>Waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkctuFDEQRVsIJKIkOz7AEhsWdOK33cvRKExegDQKYmm5nWrk4GkH251k-HrcGYIQCxRvqlw-t6yr2zRvCD4iGNNjiok4X2BKuJQvmj1KZNd2HNOXTz3T-HVzmPMNrkfXERF7zcMachztWFB2thRIfvyG4oDiVHv0M46AEgRb_J3PxTsEAVxJccyo36LNFIrv7XiNTj6eLdG9vYOM5muCXJ_mrU88CjFnVPwG5o8C5IPm1WBDhsPfdb_58uHkannaXn5enS0Xl60TQquWOOCd0II8GqP8mlDRUQXMcmGdg4EOWg5C6s4KJ0Bz0veM9VZRJYUAzvabd7u9tyn-mCAXs_HZQQh2hDhlQ5TCtNNa0GegjGoilJ7Rt_-gN3FKYzVSKSoZ4VzN1Psd5VJ1n2Awt8lvbNoags0cmvk7tIqzHX7vA2z_y5rz1XohKGaqqtqdqgYED39UNn03UjElzNdPK9ORi1Mt1tJ07BffPKZB</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Ni, Binbin</creator><creator>Cao, Xing</creator><creator>Zou, Zhengyang</creator><creator>Zhou, Chen</creator><creator>Gu, Xudong</creator><creator>Bortnik, Jacob</creator><creator>Zhang, Jichun</creator><creator>Fu, Song</creator><creator>Zhao, Zhengyu</creator><creator>Shi, Run</creator><creator>Xie, Lun</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1273-4573</orcidid></search><sort><creationdate>201509</creationdate><title>Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales</title><author>Ni, Binbin ; Cao, Xing ; Zou, Zhengyang ; Zhou, Chen ; Gu, Xudong ; Bortnik, Jacob ; Zhang, Jichun ; Fu, Song ; Zhao, Zhengyu ; Shi, Run ; Xie, Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amplitudes</topic><topic>Decay</topic><topic>Diffusion</topic><topic>Dynamics</topic><topic>electron loss time scales</topic><topic>Electrons</topic><topic>EMIC waves</topic><topic>Geophysics</topic><topic>outer radiation belt</topic><topic>Pitch angle</topic><topic>relativistic electrons</topic><topic>resonant wave-particle interactions</topic><topic>Resultants</topic><topic>Scattering</topic><topic>Time</topic><topic>Wave scattering</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Binbin</creatorcontrib><creatorcontrib>Cao, Xing</creatorcontrib><creatorcontrib>Zou, Zhengyang</creatorcontrib><creatorcontrib>Zhou, Chen</creatorcontrib><creatorcontrib>Gu, Xudong</creatorcontrib><creatorcontrib>Bortnik, Jacob</creatorcontrib><creatorcontrib>Zhang, Jichun</creatorcontrib><creatorcontrib>Fu, Song</creatorcontrib><creatorcontrib>Zhao, Zhengyu</creatorcontrib><creatorcontrib>Shi, Run</creatorcontrib><creatorcontrib>Xie, Lun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Binbin</au><au>Cao, Xing</au><au>Zou, Zhengyang</au><au>Zhou, Chen</au><au>Gu, Xudong</au><au>Bortnik, Jacob</au><au>Zhang, Jichun</au><au>Fu, Song</au><au>Zhao, Zhengyu</au><au>Shi, Run</au><au>Xie, Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2015-09</date><risdate>2015</risdate><volume>120</volume><issue>9</issue><spage>7357</spage><epage>7373</epage><pages>7357-7373</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave‐induced resonant scattering of outer zone relativistic (&gt;0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+‐band EMIC waves dominate the scattering losses of ~1–4 MeV outer zone relativistic electrons, it is He+‐band and O+‐band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave‐induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi‐parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+‐band EMIC wave scattering rates at pitch angles &lt; ~40° for electrons &gt; ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from &lt;1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90° remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to “top‐hat.” Overall, H+‐band and He+‐band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1–2 MeV. In contrast, the presence of O+‐band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5–10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics. Key Points Obliquity of EMIC waves can reduce the scattering efficiency EMIC wave scattering can cause the top‐hot electron distribution Different EMIC bands are important for RB electrons at different energies</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JA021466</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1273-4573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2015-09, Vol.120 (9), p.7357-7373
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1770298852
source Wiley-Blackwell Read & Publish Collection
subjects Amplitudes
Decay
Diffusion
Dynamics
electron loss time scales
Electrons
EMIC waves
Geophysics
outer radiation belt
Pitch angle
relativistic electrons
resonant wave-particle interactions
Resultants
Scattering
Time
Wave scattering
Waves
title Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20scattering%20of%20outer%20zone%20relativistic%20electrons%20by%20multiband%20EMIC%20waves%20and%20resultant%20electron%20loss%20time%20scales&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Ni,%20Binbin&rft.date=2015-09&rft.volume=120&rft.issue=9&rft.spage=7357&rft.epage=7373&rft.pages=7357-7373&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2015JA021466&rft_dat=%3Cproquest_cross%3E1770298852%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5587-1ce4958510214624d125927e3a45accef2f86f5689a5c5e841bb33ba727655e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1726314472&rft_id=info:pmid/&rfr_iscdi=true