Loading…
Xeroprotectants for the stabilization of biomaterials
With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anh...
Saved in:
Published in: | Biotechnology advances 2012-11, Vol.30 (6), p.1641-1654 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3 |
container_end_page | 1654 |
container_issue | 6 |
container_start_page | 1641 |
container_title | Biotechnology advances |
container_volume | 30 |
creator | Julca, I. Alaminos, M. González-López, J. Manzanera, M. |
description | With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods. |
doi_str_mv | 10.1016/j.biotechadv.2012.07.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770306914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734975012001097</els_id><sourcerecordid>1770306914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkPgF6A3SGy6Kb_tJUThIUViAZHYWW53NfGopx1sTyT4ejyagSzDqjan6l77ENJRGChQ9XY7jDFVDDd-uhsYUDaAHgDYI7KhRvOeGmsfkw1oLnqrJZyRZ6VsAagEyZ-SM8YMFYyLDZHfMafbfDhW_VpLN6fc1RvsSvVjXOJvX2NauzR3LXHnK-bol_KcPJnbwBeneU6uP1x-u_jUX335-Pni3VUfhBW1x1EEI4xnwMykpUeNzCo9KapmpiWDACMPLEwGjNTBjMwaCXYUCsMkp5mfkzfHu63hzz2W6naxBFwWv2LaF0e1Bg7KUvEfKG-PlpSqh1FKhbJWSttQc0RDTqVknN1tjjuffzkK7qDCbd29CndQ4UC7pqKtvjyl7McdTv8W__59A16fAF-CX-bs1xDLPaekktwc6r46crNPzv_Ijbn-2pIUAMhWEhrx_khgc3EXMbsSIq4Bp5ibVzel-HDfP9RBs88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114699559</pqid></control><display><type>article</type><title>Xeroprotectants for the stabilization of biomaterials</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Julca, I. ; Alaminos, M. ; González-López, J. ; Manzanera, M.</creator><creatorcontrib>Julca, I. ; Alaminos, M. ; González-López, J. ; Manzanera, M.</creatorcontrib><description>With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.</description><identifier>ISSN: 0734-9750</identifier><identifier>EISSN: 1873-1899</identifier><identifier>DOI: 10.1016/j.biotechadv.2012.07.002</identifier><identifier>PMID: 22814234</identifier><identifier>CODEN: BIADDD</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Adaptation, Physiological - drug effects ; Anhydrobionts ; Bacteria ; biocompatible materials ; Biocompatible Materials - pharmacology ; Biological and medical sciences ; Biomaterials ; Biomedical materials ; Biotechnology ; cryopreservation ; Desiccation - methods ; Drying ; eukaryotic cells ; Fundamental and applied biological sciences. Psychology ; methodology ; Preservation, Biological - methods ; Protective Agents - pharmacology ; proteins ; Stabilization ; Stabilization for drying ; storage ; Surgical implants ; Trehalose ; Xeroprotectants</subject><ispartof>Biotechnology advances, 2012-11, Vol.30 (6), p.1641-1654</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</citedby><cites>FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26565386$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22814234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Julca, I.</creatorcontrib><creatorcontrib>Alaminos, M.</creatorcontrib><creatorcontrib>González-López, J.</creatorcontrib><creatorcontrib>Manzanera, M.</creatorcontrib><title>Xeroprotectants for the stabilization of biomaterials</title><title>Biotechnology advances</title><addtitle>Biotechnol Adv</addtitle><description>With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.</description><subject>Adaptation, Physiological - drug effects</subject><subject>Anhydrobionts</subject><subject>Bacteria</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>cryopreservation</subject><subject>Desiccation - methods</subject><subject>Drying</subject><subject>eukaryotic cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>methodology</subject><subject>Preservation, Biological - methods</subject><subject>Protective Agents - pharmacology</subject><subject>proteins</subject><subject>Stabilization</subject><subject>Stabilization for drying</subject><subject>storage</subject><subject>Surgical implants</subject><subject>Trehalose</subject><subject>Xeroprotectants</subject><issn>0734-9750</issn><issn>1873-1899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkctuFDEQRS0EIkPgF6A3SGy6Kb_tJUThIUViAZHYWW53NfGopx1sTyT4ejyagSzDqjan6l77ENJRGChQ9XY7jDFVDDd-uhsYUDaAHgDYI7KhRvOeGmsfkw1oLnqrJZyRZ6VsAagEyZ-SM8YMFYyLDZHfMafbfDhW_VpLN6fc1RvsSvVjXOJvX2NauzR3LXHnK-bol_KcPJnbwBeneU6uP1x-u_jUX335-Pni3VUfhBW1x1EEI4xnwMykpUeNzCo9KapmpiWDACMPLEwGjNTBjMwaCXYUCsMkp5mfkzfHu63hzz2W6naxBFwWv2LaF0e1Bg7KUvEfKG-PlpSqh1FKhbJWSttQc0RDTqVknN1tjjuffzkK7qDCbd29CndQ4UC7pqKtvjyl7McdTv8W__59A16fAF-CX-bs1xDLPaekktwc6r46crNPzv_Ijbn-2pIUAMhWEhrx_khgc3EXMbsSIq4Bp5ibVzel-HDfP9RBs88</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Julca, I.</creator><creator>Alaminos, M.</creator><creator>González-López, J.</creator><creator>Manzanera, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Xeroprotectants for the stabilization of biomaterials</title><author>Julca, I. ; Alaminos, M. ; González-López, J. ; Manzanera, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - drug effects</topic><topic>Anhydrobionts</topic><topic>Bacteria</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>cryopreservation</topic><topic>Desiccation - methods</topic><topic>Drying</topic><topic>eukaryotic cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>methodology</topic><topic>Preservation, Biological - methods</topic><topic>Protective Agents - pharmacology</topic><topic>proteins</topic><topic>Stabilization</topic><topic>Stabilization for drying</topic><topic>storage</topic><topic>Surgical implants</topic><topic>Trehalose</topic><topic>Xeroprotectants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julca, I.</creatorcontrib><creatorcontrib>Alaminos, M.</creatorcontrib><creatorcontrib>González-López, J.</creatorcontrib><creatorcontrib>Manzanera, M.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biotechnology advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julca, I.</au><au>Alaminos, M.</au><au>González-López, J.</au><au>Manzanera, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xeroprotectants for the stabilization of biomaterials</atitle><jtitle>Biotechnology advances</jtitle><addtitle>Biotechnol Adv</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>30</volume><issue>6</issue><spage>1641</spage><epage>1654</epage><pages>1641-1654</pages><issn>0734-9750</issn><eissn>1873-1899</eissn><coden>BIADDD</coden><abstract>With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><pmid>22814234</pmid><doi>10.1016/j.biotechadv.2012.07.002</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-9750 |
ispartof | Biotechnology advances, 2012-11, Vol.30 (6), p.1641-1654 |
issn | 0734-9750 1873-1899 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770306914 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adaptation, Physiological - drug effects Anhydrobionts Bacteria biocompatible materials Biocompatible Materials - pharmacology Biological and medical sciences Biomaterials Biomedical materials Biotechnology cryopreservation Desiccation - methods Drying eukaryotic cells Fundamental and applied biological sciences. Psychology methodology Preservation, Biological - methods Protective Agents - pharmacology proteins Stabilization Stabilization for drying storage Surgical implants Trehalose Xeroprotectants |
title | Xeroprotectants for the stabilization of biomaterials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xeroprotectants%20for%20the%20stabilization%20of%20biomaterials&rft.jtitle=Biotechnology%20advances&rft.au=Julca,%20I.&rft.date=2012-11-01&rft.volume=30&rft.issue=6&rft.spage=1641&rft.epage=1654&rft.pages=1641-1654&rft.issn=0734-9750&rft.eissn=1873-1899&rft.coden=BIADDD&rft_id=info:doi/10.1016/j.biotechadv.2012.07.002&rft_dat=%3Cproquest_cross%3E1770306914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1114699559&rft_id=info:pmid/22814234&rfr_iscdi=true |