Loading…

Xeroprotectants for the stabilization of biomaterials

With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anh...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology advances 2012-11, Vol.30 (6), p.1641-1654
Main Authors: Julca, I., Alaminos, M., González-López, J., Manzanera, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3
cites cdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3
container_end_page 1654
container_issue 6
container_start_page 1641
container_title Biotechnology advances
container_volume 30
creator Julca, I.
Alaminos, M.
González-López, J.
Manzanera, M.
description With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.
doi_str_mv 10.1016/j.biotechadv.2012.07.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770306914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734975012001097</els_id><sourcerecordid>1770306914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkPgF6A3SGy6Kb_tJUThIUViAZHYWW53NfGopx1sTyT4ejyagSzDqjan6l77ENJRGChQ9XY7jDFVDDd-uhsYUDaAHgDYI7KhRvOeGmsfkw1oLnqrJZyRZ6VsAagEyZ-SM8YMFYyLDZHfMafbfDhW_VpLN6fc1RvsSvVjXOJvX2NauzR3LXHnK-bol_KcPJnbwBeneU6uP1x-u_jUX335-Pni3VUfhBW1x1EEI4xnwMykpUeNzCo9KapmpiWDACMPLEwGjNTBjMwaCXYUCsMkp5mfkzfHu63hzz2W6naxBFwWv2LaF0e1Bg7KUvEfKG-PlpSqh1FKhbJWSttQc0RDTqVknN1tjjuffzkK7qDCbd29CndQ4UC7pqKtvjyl7McdTv8W__59A16fAF-CX-bs1xDLPaekktwc6r46crNPzv_Ijbn-2pIUAMhWEhrx_khgc3EXMbsSIq4Bp5ibVzel-HDfP9RBs88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114699559</pqid></control><display><type>article</type><title>Xeroprotectants for the stabilization of biomaterials</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Julca, I. ; Alaminos, M. ; González-López, J. ; Manzanera, M.</creator><creatorcontrib>Julca, I. ; Alaminos, M. ; González-López, J. ; Manzanera, M.</creatorcontrib><description>With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.</description><identifier>ISSN: 0734-9750</identifier><identifier>EISSN: 1873-1899</identifier><identifier>DOI: 10.1016/j.biotechadv.2012.07.002</identifier><identifier>PMID: 22814234</identifier><identifier>CODEN: BIADDD</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Adaptation, Physiological - drug effects ; Anhydrobionts ; Bacteria ; biocompatible materials ; Biocompatible Materials - pharmacology ; Biological and medical sciences ; Biomaterials ; Biomedical materials ; Biotechnology ; cryopreservation ; Desiccation - methods ; Drying ; eukaryotic cells ; Fundamental and applied biological sciences. Psychology ; methodology ; Preservation, Biological - methods ; Protective Agents - pharmacology ; proteins ; Stabilization ; Stabilization for drying ; storage ; Surgical implants ; Trehalose ; Xeroprotectants</subject><ispartof>Biotechnology advances, 2012-11, Vol.30 (6), p.1641-1654</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</citedby><cites>FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26565386$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22814234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Julca, I.</creatorcontrib><creatorcontrib>Alaminos, M.</creatorcontrib><creatorcontrib>González-López, J.</creatorcontrib><creatorcontrib>Manzanera, M.</creatorcontrib><title>Xeroprotectants for the stabilization of biomaterials</title><title>Biotechnology advances</title><addtitle>Biotechnol Adv</addtitle><description>With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.</description><subject>Adaptation, Physiological - drug effects</subject><subject>Anhydrobionts</subject><subject>Bacteria</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>cryopreservation</subject><subject>Desiccation - methods</subject><subject>Drying</subject><subject>eukaryotic cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>methodology</subject><subject>Preservation, Biological - methods</subject><subject>Protective Agents - pharmacology</subject><subject>proteins</subject><subject>Stabilization</subject><subject>Stabilization for drying</subject><subject>storage</subject><subject>Surgical implants</subject><subject>Trehalose</subject><subject>Xeroprotectants</subject><issn>0734-9750</issn><issn>1873-1899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkctuFDEQRS0EIkPgF6A3SGy6Kb_tJUThIUViAZHYWW53NfGopx1sTyT4ejyagSzDqjan6l77ENJRGChQ9XY7jDFVDDd-uhsYUDaAHgDYI7KhRvOeGmsfkw1oLnqrJZyRZ6VsAagEyZ-SM8YMFYyLDZHfMafbfDhW_VpLN6fc1RvsSvVjXOJvX2NauzR3LXHnK-bol_KcPJnbwBeneU6uP1x-u_jUX335-Pni3VUfhBW1x1EEI4xnwMykpUeNzCo9KapmpiWDACMPLEwGjNTBjMwaCXYUCsMkp5mfkzfHu63hzz2W6naxBFwWv2LaF0e1Bg7KUvEfKG-PlpSqh1FKhbJWSttQc0RDTqVknN1tjjuffzkK7qDCbd29CndQ4UC7pqKtvjyl7McdTv8W__59A16fAF-CX-bs1xDLPaekktwc6r46crNPzv_Ijbn-2pIUAMhWEhrx_khgc3EXMbsSIq4Bp5ibVzel-HDfP9RBs88</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Julca, I.</creator><creator>Alaminos, M.</creator><creator>González-López, J.</creator><creator>Manzanera, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Xeroprotectants for the stabilization of biomaterials</title><author>Julca, I. ; Alaminos, M. ; González-López, J. ; Manzanera, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - drug effects</topic><topic>Anhydrobionts</topic><topic>Bacteria</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>cryopreservation</topic><topic>Desiccation - methods</topic><topic>Drying</topic><topic>eukaryotic cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>methodology</topic><topic>Preservation, Biological - methods</topic><topic>Protective Agents - pharmacology</topic><topic>proteins</topic><topic>Stabilization</topic><topic>Stabilization for drying</topic><topic>storage</topic><topic>Surgical implants</topic><topic>Trehalose</topic><topic>Xeroprotectants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julca, I.</creatorcontrib><creatorcontrib>Alaminos, M.</creatorcontrib><creatorcontrib>González-López, J.</creatorcontrib><creatorcontrib>Manzanera, M.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biotechnology advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julca, I.</au><au>Alaminos, M.</au><au>González-López, J.</au><au>Manzanera, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xeroprotectants for the stabilization of biomaterials</atitle><jtitle>Biotechnology advances</jtitle><addtitle>Biotechnol Adv</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>30</volume><issue>6</issue><spage>1641</spage><epage>1654</epage><pages>1641-1654</pages><issn>0734-9750</issn><eissn>1873-1899</eissn><coden>BIADDD</coden><abstract>With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><pmid>22814234</pmid><doi>10.1016/j.biotechadv.2012.07.002</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-9750
ispartof Biotechnology advances, 2012-11, Vol.30 (6), p.1641-1654
issn 0734-9750
1873-1899
language eng
recordid cdi_proquest_miscellaneous_1770306914
source ScienceDirect Freedom Collection 2022-2024
subjects Adaptation, Physiological - drug effects
Anhydrobionts
Bacteria
biocompatible materials
Biocompatible Materials - pharmacology
Biological and medical sciences
Biomaterials
Biomedical materials
Biotechnology
cryopreservation
Desiccation - methods
Drying
eukaryotic cells
Fundamental and applied biological sciences. Psychology
methodology
Preservation, Biological - methods
Protective Agents - pharmacology
proteins
Stabilization
Stabilization for drying
storage
Surgical implants
Trehalose
Xeroprotectants
title Xeroprotectants for the stabilization of biomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xeroprotectants%20for%20the%20stabilization%20of%20biomaterials&rft.jtitle=Biotechnology%20advances&rft.au=Julca,%20I.&rft.date=2012-11-01&rft.volume=30&rft.issue=6&rft.spage=1641&rft.epage=1654&rft.pages=1641-1654&rft.issn=0734-9750&rft.eissn=1873-1899&rft.coden=BIADDD&rft_id=info:doi/10.1016/j.biotechadv.2012.07.002&rft_dat=%3Cproquest_cross%3E1770306914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-eb4c848a2028d75ae7e2967d616f27520c0b3c2cd80857c8b298509b46ecd5df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1114699559&rft_id=info:pmid/22814234&rfr_iscdi=true