Loading…

Quantisation of the effective string with TBA

A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2013-07, Vol.2013 (7), p.1-26, Article 71
Main Authors: Caselle, Michele, Fioravanti, Davide, Gliozzi, Ferdinando, Tateo, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional massless free-field theory. It is known that the Lorentz invariance of the gauge theory fixes uniquely the first few subleading corrections of this free-field limit. We point out that the first allowed correction - a quartic polynomial in the field derivatives - is exactly the composite field , built with the chiral components, T and , of the energy-momentum tensor. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. We obtain this way the results recently found by Dubovsky, Flauger and Gorbenko. This procedure easily generalizes to any two-dimensional CFT. It is known that the leading deviation of the Nambu-Goto spectrum comes from the boundary terms of the string action. We solve the TBA equations on an infinite strip, identify the relevant boundary parameter and verify that it modifies the string spectrum as expected.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2013)071