Loading…

Quantisation of the effective string with TBA

A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2013-07, Vol.2013 (7), p.1-26, Article 71
Main Authors: Caselle, Michele, Fioravanti, Davide, Gliozzi, Ferdinando, Tateo, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663
cites cdi_FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663
container_end_page 26
container_issue 7
container_start_page 1
container_title The journal of high energy physics
container_volume 2013
creator Caselle, Michele
Fioravanti, Davide
Gliozzi, Ferdinando
Tateo, Roberto
description A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional massless free-field theory. It is known that the Lorentz invariance of the gauge theory fixes uniquely the first few subleading corrections of this free-field limit. We point out that the first allowed correction - a quartic polynomial in the field derivatives - is exactly the composite field , built with the chiral components, T and , of the energy-momentum tensor. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. We obtain this way the results recently found by Dubovsky, Flauger and Gorbenko. This procedure easily generalizes to any two-dimensional CFT. It is known that the leading deviation of the Nambu-Goto spectrum comes from the boundary terms of the string action. We solve the TBA equations on an infinite strip, identify the relevant boundary parameter and verify that it modifies the string spectrum as expected.
doi_str_mv 10.1007/JHEP07(2013)071
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770309540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770309540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKtrtwNu6mLsy-RrsqylWqWgQl2HNE1sSjtTk0zFf--UcVEEV-8uzr08DkLXGO4wgBg-TyevIAYFYHILAp-gHoZC5iUV8vQon6OLGNcAmGEJPZS_NbpKPurk6yqrXZZWNrPOWZP83mYxBV99ZF8-rbL5_egSnTm9ifbq9_bR-8NkPp7ms5fHp_FolhtKIOXlckklE6bkpXOaFgBEA-FgGeNOODBcF6ygsBQFoRb4gjHJFsBAamEc56SPBt3uLtSfjY1JbX00drPRla2bqLAQQEAyCi168wdd102o2u8U5qyQBERZttSwo0yoYwzWqV3wWx2-FQZ10Kc6feqgT7X62gZ0jbg7KLDhaPefyg9lZ25b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652930788</pqid></control><display><type>article</type><title>Quantisation of the effective string with TBA</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Caselle, Michele ; Fioravanti, Davide ; Gliozzi, Ferdinando ; Tateo, Roberto</creator><creatorcontrib>Caselle, Michele ; Fioravanti, Davide ; Gliozzi, Ferdinando ; Tateo, Roberto</creatorcontrib><description>A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional massless free-field theory. It is known that the Lorentz invariance of the gauge theory fixes uniquely the first few subleading corrections of this free-field limit. We point out that the first allowed correction - a quartic polynomial in the field derivatives - is exactly the composite field , built with the chiral components, T and , of the energy-momentum tensor. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. We obtain this way the results recently found by Dubovsky, Flauger and Gorbenko. This procedure easily generalizes to any two-dimensional CFT. It is known that the leading deviation of the Nambu-Goto spectrum comes from the boundary terms of the string action. We solve the TBA equations on an infinite strip, identify the relevant boundary parameter and verify that it modifies the string spectrum as expected.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2013)071</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundaries ; Classical and Quantum Gravitation ; Confining ; Derivatives ; Deviation ; Elementary Particles ; Gauge theory ; High energy physics ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory ; Strings ; Two dimensional</subject><ispartof>The journal of high energy physics, 2013-07, Vol.2013 (7), p.1-26, Article 71</ispartof><rights>SISSA, Trieste, Italy 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663</citedby><cites>FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1652930788/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1652930788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Caselle, Michele</creatorcontrib><creatorcontrib>Fioravanti, Davide</creatorcontrib><creatorcontrib>Gliozzi, Ferdinando</creatorcontrib><creatorcontrib>Tateo, Roberto</creatorcontrib><title>Quantisation of the effective string with TBA</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional massless free-field theory. It is known that the Lorentz invariance of the gauge theory fixes uniquely the first few subleading corrections of this free-field limit. We point out that the first allowed correction - a quartic polynomial in the field derivatives - is exactly the composite field , built with the chiral components, T and , of the energy-momentum tensor. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. We obtain this way the results recently found by Dubovsky, Flauger and Gorbenko. This procedure easily generalizes to any two-dimensional CFT. It is known that the leading deviation of the Nambu-Goto spectrum comes from the boundary terms of the string action. We solve the TBA equations on an infinite strip, identify the relevant boundary parameter and verify that it modifies the string spectrum as expected.</description><subject>Boundaries</subject><subject>Classical and Quantum Gravitation</subject><subject>Confining</subject><subject>Derivatives</subject><subject>Deviation</subject><subject>Elementary Particles</subject><subject>Gauge theory</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Strings</subject><subject>Two dimensional</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kE1LAzEURYMoWKtrtwNu6mLsy-RrsqylWqWgQl2HNE1sSjtTk0zFf--UcVEEV-8uzr08DkLXGO4wgBg-TyevIAYFYHILAp-gHoZC5iUV8vQon6OLGNcAmGEJPZS_NbpKPurk6yqrXZZWNrPOWZP83mYxBV99ZF8-rbL5_egSnTm9ifbq9_bR-8NkPp7ms5fHp_FolhtKIOXlckklE6bkpXOaFgBEA-FgGeNOODBcF6ygsBQFoRb4gjHJFsBAamEc56SPBt3uLtSfjY1JbX00drPRla2bqLAQQEAyCi168wdd102o2u8U5qyQBERZttSwo0yoYwzWqV3wWx2-FQZ10Kc6feqgT7X62gZ0jbg7KLDhaPefyg9lZ25b</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Caselle, Michele</creator><creator>Fioravanti, Davide</creator><creator>Gliozzi, Ferdinando</creator><creator>Tateo, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Quantisation of the effective string with TBA</title><author>Caselle, Michele ; Fioravanti, Davide ; Gliozzi, Ferdinando ; Tateo, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Classical and Quantum Gravitation</topic><topic>Confining</topic><topic>Derivatives</topic><topic>Deviation</topic><topic>Elementary Particles</topic><topic>Gauge theory</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Strings</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caselle, Michele</creatorcontrib><creatorcontrib>Fioravanti, Davide</creatorcontrib><creatorcontrib>Gliozzi, Ferdinando</creatorcontrib><creatorcontrib>Tateo, Roberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caselle, Michele</au><au>Fioravanti, Davide</au><au>Gliozzi, Ferdinando</au><au>Tateo, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantisation of the effective string with TBA</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>2013</volume><issue>7</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>71</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract In presence of a static pair of sources, the spectrum of low-lying states of whatever confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. In the far infrared the latter flows, in the static gauge, to a two-dimensional massless free-field theory. It is known that the Lorentz invariance of the gauge theory fixes uniquely the first few subleading corrections of this free-field limit. We point out that the first allowed correction - a quartic polynomial in the field derivatives - is exactly the composite field , built with the chiral components, T and , of the energy-momentum tensor. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. We obtain this way the results recently found by Dubovsky, Flauger and Gorbenko. This procedure easily generalizes to any two-dimensional CFT. It is known that the leading deviation of the Nambu-Goto spectrum comes from the boundary terms of the string action. We solve the TBA equations on an infinite strip, identify the relevant boundary parameter and verify that it modifies the string spectrum as expected.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP07(2013)071</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2013-07, Vol.2013 (7), p.1-26, Article 71
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1770309540
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Boundaries
Classical and Quantum Gravitation
Confining
Derivatives
Deviation
Elementary Particles
Gauge theory
High energy physics
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
Strings
Two dimensional
title Quantisation of the effective string with TBA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantisation%20of%20the%20effective%20string%20with%20TBA&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Caselle,%20Michele&rft.date=2013-07-01&rft.volume=2013&rft.issue=7&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=71&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2013)071&rft_dat=%3Cproquest_cross%3E1770309540%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-8dd4957c868ffa42003a0360e556f7f0c6a25240d7234e06b5595b0509a7cf663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652930788&rft_id=info:pmid/&rfr_iscdi=true