Loading…
Music genre classification with Self-Organizing Maps and edit distance
We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Popovici, Razvan Andonie, Razvan |
description | We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm). |
doi_str_mv | 10.1109/IJCNN.2015.7280559 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770310126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7280559</ieee_id><sourcerecordid>1770310126</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-c9a772b30c14a4aa0bbe4f112a63aeca77bfd3246722c8a2e3bb5df1df606e493</originalsourceid><addsrcrecordid>eNo1kD1PwzAURQ0CiVL6B2DxyJLiZztxPKKKQlE_BmCOXpznYpS6JU6F4NdTqTDdI92jO1zGrkGMAYS9mz1PlsuxFJCPjSxFntsTNrKmBG2sBVsIfcoGEgrItBbm7J-VVRfsMqUPIaSyVg3YdLFPwfE1xY64azGl4IPDPmwj_wr9O3-h1merbo0x_IS45gvcJY6x4dSEnjch9RgdXbFzj22i0V8O2dv04XXylM1Xj7PJ_TwLUpR95iwaI2slHGjUiKKuSXsAiYVCcoey9o2SujBSuhIlqbrOGw-NL0RB2qohuz3u7rrt555SX21CctS2GGm7TxUYIxQIkMVBvTmqgYiqXRc22H1Xf2-pXxHMXEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770310126</pqid></control><display><type>conference_proceeding</type><title>Music genre classification with Self-Organizing Maps and edit distance</title><source>IEEE Xplore All Conference Series</source><creator>Popovici, Razvan ; Andonie, Razvan</creator><creatorcontrib>Popovici, Razvan ; Andonie, Razvan</creatorcontrib><description>We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).</description><identifier>ISSN: 2161-4393</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781479919604</identifier><identifier>EISBN: 1479919608</identifier><identifier>DOI: 10.1109/IJCNN.2015.7280559</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithms ; Classification ; Classifiers ; Edit distance ; Evolving Self-Organizing Maps ; Instruments ; Mathematical analysis ; Music ; Music genre classification ; Signal clustering ; Similarity ; Sociology ; Statistics ; String clustering</subject><ispartof>2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7280559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7280559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Popovici, Razvan</creatorcontrib><creatorcontrib>Andonie, Razvan</creatorcontrib><title>Music genre classification with Self-Organizing Maps and edit distance</title><title>2015 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Edit distance</subject><subject>Evolving Self-Organizing Maps</subject><subject>Instruments</subject><subject>Mathematical analysis</subject><subject>Music</subject><subject>Music genre classification</subject><subject>Signal clustering</subject><subject>Similarity</subject><subject>Sociology</subject><subject>Statistics</subject><subject>String clustering</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781479919604</isbn><isbn>1479919608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAURQ0CiVL6B2DxyJLiZztxPKKKQlE_BmCOXpznYpS6JU6F4NdTqTDdI92jO1zGrkGMAYS9mz1PlsuxFJCPjSxFntsTNrKmBG2sBVsIfcoGEgrItBbm7J-VVRfsMqUPIaSyVg3YdLFPwfE1xY64azGl4IPDPmwj_wr9O3-h1merbo0x_IS45gvcJY6x4dSEnjch9RgdXbFzj22i0V8O2dv04XXylM1Xj7PJ_TwLUpR95iwaI2slHGjUiKKuSXsAiYVCcoey9o2SujBSuhIlqbrOGw-NL0RB2qohuz3u7rrt555SX21CctS2GGm7TxUYIxQIkMVBvTmqgYiqXRc22H1Xf2-pXxHMXEQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Popovici, Razvan</creator><creator>Andonie, Razvan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Music genre classification with Self-Organizing Maps and edit distance</title><author>Popovici, Razvan ; Andonie, Razvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-c9a772b30c14a4aa0bbe4f112a63aeca77bfd3246722c8a2e3bb5df1df606e493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Edit distance</topic><topic>Evolving Self-Organizing Maps</topic><topic>Instruments</topic><topic>Mathematical analysis</topic><topic>Music</topic><topic>Music genre classification</topic><topic>Signal clustering</topic><topic>Similarity</topic><topic>Sociology</topic><topic>Statistics</topic><topic>String clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Popovici, Razvan</creatorcontrib><creatorcontrib>Andonie, Razvan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Popovici, Razvan</au><au>Andonie, Razvan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Music genre classification with Self-Organizing Maps and edit distance</atitle><btitle>2015 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><eisbn>9781479919604</eisbn><eisbn>1479919608</eisbn><abstract>We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2015.7280559</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | 2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-7 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770310126 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Algorithms Classification Classifiers Edit distance Evolving Self-Organizing Maps Instruments Mathematical analysis Music Music genre classification Signal clustering Similarity Sociology Statistics String clustering |
title | Music genre classification with Self-Organizing Maps and edit distance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Music%20genre%20classification%20with%20Self-Organizing%20Maps%20and%20edit%20distance&rft.btitle=2015%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Popovici,%20Razvan&rft.date=2015-07-01&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2161-4393&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2015.7280559&rft.eisbn=9781479919604&rft.eisbn_list=1479919608&rft_dat=%3Cproquest_CHZPO%3E1770310126%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-c9a772b30c14a4aa0bbe4f112a63aeca77bfd3246722c8a2e3bb5df1df606e493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770310126&rft_id=info:pmid/&rft_ieee_id=7280559&rfr_iscdi=true |