Loading…

Music genre classification with Self-Organizing Maps and edit distance

We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard...

Full description

Saved in:
Bibliographic Details
Main Authors: Popovici, Razvan, Andonie, Razvan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Popovici, Razvan
Andonie, Razvan
description We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).
doi_str_mv 10.1109/IJCNN.2015.7280559
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770310126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7280559</ieee_id><sourcerecordid>1770310126</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-c9a772b30c14a4aa0bbe4f112a63aeca77bfd3246722c8a2e3bb5df1df606e493</originalsourceid><addsrcrecordid>eNo1kD1PwzAURQ0CiVL6B2DxyJLiZztxPKKKQlE_BmCOXpznYpS6JU6F4NdTqTDdI92jO1zGrkGMAYS9mz1PlsuxFJCPjSxFntsTNrKmBG2sBVsIfcoGEgrItBbm7J-VVRfsMqUPIaSyVg3YdLFPwfE1xY64azGl4IPDPmwj_wr9O3-h1merbo0x_IS45gvcJY6x4dSEnjch9RgdXbFzj22i0V8O2dv04XXylM1Xj7PJ_TwLUpR95iwaI2slHGjUiKKuSXsAiYVCcoey9o2SujBSuhIlqbrOGw-NL0RB2qohuz3u7rrt555SX21CctS2GGm7TxUYIxQIkMVBvTmqgYiqXRc22H1Xf2-pXxHMXEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1770310126</pqid></control><display><type>conference_proceeding</type><title>Music genre classification with Self-Organizing Maps and edit distance</title><source>IEEE Xplore All Conference Series</source><creator>Popovici, Razvan ; Andonie, Razvan</creator><creatorcontrib>Popovici, Razvan ; Andonie, Razvan</creatorcontrib><description>We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).</description><identifier>ISSN: 2161-4393</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781479919604</identifier><identifier>EISBN: 1479919608</identifier><identifier>DOI: 10.1109/IJCNN.2015.7280559</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithms ; Classification ; Classifiers ; Edit distance ; Evolving Self-Organizing Maps ; Instruments ; Mathematical analysis ; Music ; Music genre classification ; Signal clustering ; Similarity ; Sociology ; Statistics ; String clustering</subject><ispartof>2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7280559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7280559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Popovici, Razvan</creatorcontrib><creatorcontrib>Andonie, Razvan</creatorcontrib><title>Music genre classification with Self-Organizing Maps and edit distance</title><title>2015 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Edit distance</subject><subject>Evolving Self-Organizing Maps</subject><subject>Instruments</subject><subject>Mathematical analysis</subject><subject>Music</subject><subject>Music genre classification</subject><subject>Signal clustering</subject><subject>Similarity</subject><subject>Sociology</subject><subject>Statistics</subject><subject>String clustering</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781479919604</isbn><isbn>1479919608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAURQ0CiVL6B2DxyJLiZztxPKKKQlE_BmCOXpznYpS6JU6F4NdTqTDdI92jO1zGrkGMAYS9mz1PlsuxFJCPjSxFntsTNrKmBG2sBVsIfcoGEgrItBbm7J-VVRfsMqUPIaSyVg3YdLFPwfE1xY64azGl4IPDPmwj_wr9O3-h1merbo0x_IS45gvcJY6x4dSEnjch9RgdXbFzj22i0V8O2dv04XXylM1Xj7PJ_TwLUpR95iwaI2slHGjUiKKuSXsAiYVCcoey9o2SujBSuhIlqbrOGw-NL0RB2qohuz3u7rrt555SX21CctS2GGm7TxUYIxQIkMVBvTmqgYiqXRc22H1Xf2-pXxHMXEQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Popovici, Razvan</creator><creator>Andonie, Razvan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Music genre classification with Self-Organizing Maps and edit distance</title><author>Popovici, Razvan ; Andonie, Razvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-c9a772b30c14a4aa0bbe4f112a63aeca77bfd3246722c8a2e3bb5df1df606e493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Edit distance</topic><topic>Evolving Self-Organizing Maps</topic><topic>Instruments</topic><topic>Mathematical analysis</topic><topic>Music</topic><topic>Music genre classification</topic><topic>Signal clustering</topic><topic>Similarity</topic><topic>Sociology</topic><topic>Statistics</topic><topic>String clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Popovici, Razvan</creatorcontrib><creatorcontrib>Andonie, Razvan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Popovici, Razvan</au><au>Andonie, Razvan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Music genre classification with Self-Organizing Maps and edit distance</atitle><btitle>2015 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2015-07-01</date><risdate>2015</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><eisbn>9781479919604</eisbn><eisbn>1479919608</eisbn><abstract>We propose a method for music genre classification based on a Self-Organizing Map (SOM) - type network. Music pieces are viewed as sequences of pitch and timbre signals. We define a similarity measure between these sequences, derived from the Levenshtein (edit) distance. In contrast to the standard Levenshtein distance, our similarity measure is able to operate on a continuous vector space. Using this measure, we map the input music pieces on a SOM. The SOM is trained using a special string adjustment mechanism, which is determined by an algebraic equation. Our method turns out to achieve better classification accuracy than some other recent techniques. The feature set identified by SOM provides superior classifier accuracy compared to the same classifier applied on a random feature set of the same size. On standard benchmarks, two of our derived classifiers achieve accuracies of 97.32% (using a slow kNN learning algorithm), respectively 95.20% (using a SOM - type algorithm).</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2015.7280559</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2015 International Joint Conference on Neural Networks (IJCNN), 2015, p.1-7
issn 2161-4393
2161-4407
language eng
recordid cdi_proquest_miscellaneous_1770310126
source IEEE Xplore All Conference Series
subjects Accuracy
Algorithms
Classification
Classifiers
Edit distance
Evolving Self-Organizing Maps
Instruments
Mathematical analysis
Music
Music genre classification
Signal clustering
Similarity
Sociology
Statistics
String clustering
title Music genre classification with Self-Organizing Maps and edit distance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Music%20genre%20classification%20with%20Self-Organizing%20Maps%20and%20edit%20distance&rft.btitle=2015%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Popovici,%20Razvan&rft.date=2015-07-01&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2161-4393&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2015.7280559&rft.eisbn=9781479919604&rft.eisbn_list=1479919608&rft_dat=%3Cproquest_CHZPO%3E1770310126%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-c9a772b30c14a4aa0bbe4f112a63aeca77bfd3246722c8a2e3bb5df1df606e493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770310126&rft_id=info:pmid/&rft_ieee_id=7280559&rfr_iscdi=true