Loading…
Optimal profiles in a phase-transition model with a saturating flux
It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation mode...
Saved in:
Published in: | Nonlinear analysis 2015-09, Vol.125, p.334-357, Article 334 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83 |
container_end_page | 357 |
container_issue | |
container_start_page | 334 |
container_title | Nonlinear analysis |
container_volume | 125 |
creator | Bonheure, Denis Obersnel, Franco |
description | It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces. |
doi_str_mv | 10.1016/j.na.2015.05.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770312157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15001807</els_id><sourcerecordid>1770312157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfbopXWStE3rTRa_YMGLgreQNhM3S7etSerHf2_KehIUBgZm3m-Y9wg5p5BRoOXlNutVxoAWGcRi4oAsaCV4WjBaHJIF8JKlRV6-HJMT77cAQAUvF2T1OAa7U10yusHYDn1i-0Ql40Z5TINTvbfBDn2yGzR2yYcNm7j1KkxOBdu_JqabPk_JkVGdx7OfviTPtzdPq_t0_Xj3sLpepy0v65CWVYO11k1eG11p0VamEQBcKA46DsAg5kwBBxRa54YLNLowNTO1bhg1FV-Si_3d-OvbhD7InfUtdp3qcZi8pEIAp9GviFLYS1s3eO_QyNFFm-5LUpBzXnIreyXnvCTEYjNS_kJaG9RsPsZgu__Aqz2I0fu7RSd9a7FvUVuHbZB6sH_D3zzvhWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770312157</pqid></control><display><type>article</type><title>Optimal profiles in a phase-transition model with a saturating flux</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Bonheure, Denis ; Obersnel, Franco</creator><creatorcontrib>Bonheure, Denis ; Obersnel, Franco</creatorcontrib><description>It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.05.027</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>1D-symmetry ; Cylinders ; Dirichlet problem ; Double well potential ; Flux ; Flux-limited diffusion ; Increasing rearrangement ; Locally bounded variation function ; Mathematical analysis ; Mathematical models ; Optimization ; Prescribed mean curvature equation ; Quasilinear partial differential equation ; Symmetry ; Translations</subject><ispartof>Nonlinear analysis, 2015-09, Vol.125, p.334-357, Article 334</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</citedby><cites>FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15001807$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3563,27923,27924,46002</link.rule.ids></links><search><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Obersnel, Franco</creatorcontrib><title>Optimal profiles in a phase-transition model with a saturating flux</title><title>Nonlinear analysis</title><description>It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.</description><subject>1D-symmetry</subject><subject>Cylinders</subject><subject>Dirichlet problem</subject><subject>Double well potential</subject><subject>Flux</subject><subject>Flux-limited diffusion</subject><subject>Increasing rearrangement</subject><subject>Locally bounded variation function</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Prescribed mean curvature equation</subject><subject>Quasilinear partial differential equation</subject><subject>Symmetry</subject><subject>Translations</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfbopXWStE3rTRa_YMGLgreQNhM3S7etSerHf2_KehIUBgZm3m-Y9wg5p5BRoOXlNutVxoAWGcRi4oAsaCV4WjBaHJIF8JKlRV6-HJMT77cAQAUvF2T1OAa7U10yusHYDn1i-0Ql40Z5TINTvbfBDn2yGzR2yYcNm7j1KkxOBdu_JqabPk_JkVGdx7OfviTPtzdPq_t0_Xj3sLpepy0v65CWVYO11k1eG11p0VamEQBcKA46DsAg5kwBBxRa54YLNLowNTO1bhg1FV-Si_3d-OvbhD7InfUtdp3qcZi8pEIAp9GviFLYS1s3eO_QyNFFm-5LUpBzXnIreyXnvCTEYjNS_kJaG9RsPsZgu__Aqz2I0fu7RSd9a7FvUVuHbZB6sH_D3zzvhWo</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bonheure, Denis</creator><creator>Obersnel, Franco</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Optimal profiles in a phase-transition model with a saturating flux</title><author>Bonheure, Denis ; Obersnel, Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1D-symmetry</topic><topic>Cylinders</topic><topic>Dirichlet problem</topic><topic>Double well potential</topic><topic>Flux</topic><topic>Flux-limited diffusion</topic><topic>Increasing rearrangement</topic><topic>Locally bounded variation function</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Prescribed mean curvature equation</topic><topic>Quasilinear partial differential equation</topic><topic>Symmetry</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Obersnel, Franco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonheure, Denis</au><au>Obersnel, Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal profiles in a phase-transition model with a saturating flux</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>125</volume><spage>334</spage><epage>357</epage><pages>334-357</pages><artnum>334</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.05.027</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2015-09, Vol.125, p.334-357, Article 334 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770312157 |
source | Elsevier; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | 1D-symmetry Cylinders Dirichlet problem Double well potential Flux Flux-limited diffusion Increasing rearrangement Locally bounded variation function Mathematical analysis Mathematical models Optimization Prescribed mean curvature equation Quasilinear partial differential equation Symmetry Translations |
title | Optimal profiles in a phase-transition model with a saturating flux |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20profiles%20in%20a%20phase-transition%20model%20with%20a%20saturating%20flux&rft.jtitle=Nonlinear%20analysis&rft.au=Bonheure,%20Denis&rft.date=2015-09-01&rft.volume=125&rft.spage=334&rft.epage=357&rft.pages=334-357&rft.artnum=334&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.05.027&rft_dat=%3Cproquest_cross%3E1770312157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770312157&rft_id=info:pmid/&rfr_iscdi=true |