Loading…

Optimal profiles in a phase-transition model with a saturating flux

It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation mode...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2015-09, Vol.125, p.334-357, Article 334
Main Authors: Bonheure, Denis, Obersnel, Franco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83
cites cdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83
container_end_page 357
container_issue
container_start_page 334
container_title Nonlinear analysis
container_volume 125
creator Bonheure, Denis
Obersnel, Franco
description It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.
doi_str_mv 10.1016/j.na.2015.05.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770312157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15001807</els_id><sourcerecordid>1770312157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePfbopXWStE3rTRa_YMGLgreQNhM3S7etSerHf2_KehIUBgZm3m-Y9wg5p5BRoOXlNutVxoAWGcRi4oAsaCV4WjBaHJIF8JKlRV6-HJMT77cAQAUvF2T1OAa7U10yusHYDn1i-0Ql40Z5TINTvbfBDn2yGzR2yYcNm7j1KkxOBdu_JqabPk_JkVGdx7OfviTPtzdPq_t0_Xj3sLpepy0v65CWVYO11k1eG11p0VamEQBcKA46DsAg5kwBBxRa54YLNLowNTO1bhg1FV-Si_3d-OvbhD7InfUtdp3qcZi8pEIAp9GviFLYS1s3eO_QyNFFm-5LUpBzXnIreyXnvCTEYjNS_kJaG9RsPsZgu__Aqz2I0fu7RSd9a7FvUVuHbZB6sH_D3zzvhWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770312157</pqid></control><display><type>article</type><title>Optimal profiles in a phase-transition model with a saturating flux</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Bonheure, Denis ; Obersnel, Franco</creator><creatorcontrib>Bonheure, Denis ; Obersnel, Franco</creatorcontrib><description>It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.05.027</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>1D-symmetry ; Cylinders ; Dirichlet problem ; Double well potential ; Flux ; Flux-limited diffusion ; Increasing rearrangement ; Locally bounded variation function ; Mathematical analysis ; Mathematical models ; Optimization ; Prescribed mean curvature equation ; Quasilinear partial differential equation ; Symmetry ; Translations</subject><ispartof>Nonlinear analysis, 2015-09, Vol.125, p.334-357, Article 334</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</citedby><cites>FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15001807$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3563,27923,27924,46002</link.rule.ids></links><search><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Obersnel, Franco</creatorcontrib><title>Optimal profiles in a phase-transition model with a saturating flux</title><title>Nonlinear analysis</title><description>It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.</description><subject>1D-symmetry</subject><subject>Cylinders</subject><subject>Dirichlet problem</subject><subject>Double well potential</subject><subject>Flux</subject><subject>Flux-limited diffusion</subject><subject>Increasing rearrangement</subject><subject>Locally bounded variation function</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Prescribed mean curvature equation</subject><subject>Quasilinear partial differential equation</subject><subject>Symmetry</subject><subject>Translations</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePfbopXWStE3rTRa_YMGLgreQNhM3S7etSerHf2_KehIUBgZm3m-Y9wg5p5BRoOXlNutVxoAWGcRi4oAsaCV4WjBaHJIF8JKlRV6-HJMT77cAQAUvF2T1OAa7U10yusHYDn1i-0Ql40Z5TINTvbfBDn2yGzR2yYcNm7j1KkxOBdu_JqabPk_JkVGdx7OfviTPtzdPq_t0_Xj3sLpepy0v65CWVYO11k1eG11p0VamEQBcKA46DsAg5kwBBxRa54YLNLowNTO1bhg1FV-Si_3d-OvbhD7InfUtdp3qcZi8pEIAp9GviFLYS1s3eO_QyNFFm-5LUpBzXnIreyXnvCTEYjNS_kJaG9RsPsZgu__Aqz2I0fu7RSd9a7FvUVuHbZB6sH_D3zzvhWo</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bonheure, Denis</creator><creator>Obersnel, Franco</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Optimal profiles in a phase-transition model with a saturating flux</title><author>Bonheure, Denis ; Obersnel, Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>1D-symmetry</topic><topic>Cylinders</topic><topic>Dirichlet problem</topic><topic>Double well potential</topic><topic>Flux</topic><topic>Flux-limited diffusion</topic><topic>Increasing rearrangement</topic><topic>Locally bounded variation function</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Prescribed mean curvature equation</topic><topic>Quasilinear partial differential equation</topic><topic>Symmetry</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Obersnel, Franco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonheure, Denis</au><au>Obersnel, Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal profiles in a phase-transition model with a saturating flux</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>125</volume><spage>334</spage><epage>357</epage><pages>334-357</pages><artnum>334</artnum><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>It is well known that for the Allen–Cahn equation, the minimizing transition in an infinite cylinder R×ω is one-dimensional and unique up to a translation in the first variable. We analyze in this paper the existence and symmetry of optimal profiles for transitions in a similar phase-separation model with a saturating flux. This amounts to consider transitions in the space of BV functions as we consider the area integral instead of the Dirichlet energy to penalize the creation of wild interfaces.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.05.027</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2015-09, Vol.125, p.334-357, Article 334
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1770312157
source Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects 1D-symmetry
Cylinders
Dirichlet problem
Double well potential
Flux
Flux-limited diffusion
Increasing rearrangement
Locally bounded variation function
Mathematical analysis
Mathematical models
Optimization
Prescribed mean curvature equation
Quasilinear partial differential equation
Symmetry
Translations
title Optimal profiles in a phase-transition model with a saturating flux
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20profiles%20in%20a%20phase-transition%20model%20with%20a%20saturating%20flux&rft.jtitle=Nonlinear%20analysis&rft.au=Bonheure,%20Denis&rft.date=2015-09-01&rft.volume=125&rft.spage=334&rft.epage=357&rft.pages=334-357&rft.artnum=334&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.05.027&rft_dat=%3Cproquest_cross%3E1770312157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-68be9ddb49fd8d7c8fb70037a30dd8d0fee42a030e7dd4f37efd5f92f9db21f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770312157&rft_id=info:pmid/&rfr_iscdi=true