Loading…

Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles

Using experimental data obtained in naturally grown boundary layers over a generic urban-type roughness (height h ) it is shown that the surface drag is strongly dependent on the flow direction with respect to the roughness orientation. The variations with wind direction are accompanied by correspon...

Full description

Saved in:
Bibliographic Details
Published in:Boundary-layer meteorology 2012-12, Vol.145 (3), p.407-422
Main Authors: Claus, Jean, Krogstad, P.-Å., Castro, Ian P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373
cites cdi_FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373
container_end_page 422
container_issue 3
container_start_page 407
container_title Boundary-layer meteorology
container_volume 145
creator Claus, Jean
Krogstad, P.-Å.
Castro, Ian P.
description Using experimental data obtained in naturally grown boundary layers over a generic urban-type roughness (height h ) it is shown that the surface drag is strongly dependent on the flow direction with respect to the roughness orientation. The variations with wind direction are accompanied by corresponding changes in the parameters contained in the usual logarithmic description of the flow in the near-wall inertial layer, , principally the roughness length z o , which can vary by a factor of around three. The maximum surface drag (and roughness length) occur when the flow direction is at an angle around 45° to the faces of the cubical roughness elements, consistent with the known fact that the drag of an isolated cube in a thick boundary layer is much larger at that orientation than for flow directions normal to the faces. An accurate electronic balance was used to determine the surface drag (and hence friction velocity u τ ) and pressure-tapped roughness elements allowed estimation of the zero plane displacement d . It is shown that the best logarithmic-law fits then generally require values of the von Kármán ‘constant’ κ significantly lower than its classical value of around 0.41. For a factor of six increase in the Reynolds number (from ), Reynolds number effects are shown to be very weak and, coupled with the form drag and total drag data, the results thus suggest that frictional contributions to the total surface drag are relatively small.
doi_str_mv 10.1007/s10546-012-9736-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770316205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364958369</galeid><sourcerecordid>A364958369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK7-AG8BEbxkTTpf3cdx_YQRDzuux1CTrgxZutNj0n2Yf2-GXkQEkRxCKs9bvFUvIS8Fvxac27dFcK0M46JhnZWGyUdkI7SVTCjbPCYbzrlhrRTqKXlWyn19WqH5htzdTiPSrwhlyThimgudAr1dcgCP9H2GI42Jfs8HSGx_PiF9Ny2ph3ymOzhjLhRmegc5TkuhP2Lq6TYdByzPyZMAQ8EXD_cV2X_8sL_5zHbfPn252e6YV1rMrAsA2PTCaG2U0hyVMgcrOsu9wSYYUNg0hwDc1zGssl3gPfpargUurbwib9a2pzz9XLDMbozF4zBAwurICWu5FKbh-v-osKLtWqsvXV_9hd5PS051jkqJatW0narU9UodYUAXU5jmDL6eHsfop4Qh1vpWGtXpVpquCsQq8HkqJWNwpxzHukonuLuE6NYQXQ3RXUJ0smpeP1iB4mEIGZKP5bewMVq11U_lmpUr9SsdMf9h-Z_NfwFkr6j1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1115566894</pqid></control><display><type>article</type><title>Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles</title><source>Springer Nature</source><creator>Claus, Jean ; Krogstad, P.-Å. ; Castro, Ian P.</creator><creatorcontrib>Claus, Jean ; Krogstad, P.-Å. ; Castro, Ian P.</creatorcontrib><description>Using experimental data obtained in naturally grown boundary layers over a generic urban-type roughness (height h ) it is shown that the surface drag is strongly dependent on the flow direction with respect to the roughness orientation. The variations with wind direction are accompanied by corresponding changes in the parameters contained in the usual logarithmic description of the flow in the near-wall inertial layer, , principally the roughness length z o , which can vary by a factor of around three. The maximum surface drag (and roughness length) occur when the flow direction is at an angle around 45° to the faces of the cubical roughness elements, consistent with the known fact that the drag of an isolated cube in a thick boundary layer is much larger at that orientation than for flow directions normal to the faces. An accurate electronic balance was used to determine the surface drag (and hence friction velocity u τ ) and pressure-tapped roughness elements allowed estimation of the zero plane displacement d . It is shown that the best logarithmic-law fits then generally require values of the von Kármán ‘constant’ κ significantly lower than its classical value of around 0.41. For a factor of six increase in the Reynolds number (from ), Reynolds number effects are shown to be very weak and, coupled with the form drag and total drag data, the results thus suggest that frictional contributions to the total surface drag are relatively small.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-012-9736-3</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Boundaries ; Boundary layer ; Boundary layers ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Drag ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Fluid flow ; Measurement ; Measurement techniques ; Meteorology ; Orientation ; Reynolds number ; Roughness ; Urban areas ; Wind</subject><ispartof>Boundary-layer meteorology, 2012-12, Vol.145 (3), p.407-422</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media Dordrecht 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373</citedby><cites>FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26548566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Claus, Jean</creatorcontrib><creatorcontrib>Krogstad, P.-Å.</creatorcontrib><creatorcontrib>Castro, Ian P.</creatorcontrib><title>Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Using experimental data obtained in naturally grown boundary layers over a generic urban-type roughness (height h ) it is shown that the surface drag is strongly dependent on the flow direction with respect to the roughness orientation. The variations with wind direction are accompanied by corresponding changes in the parameters contained in the usual logarithmic description of the flow in the near-wall inertial layer, , principally the roughness length z o , which can vary by a factor of around three. The maximum surface drag (and roughness length) occur when the flow direction is at an angle around 45° to the faces of the cubical roughness elements, consistent with the known fact that the drag of an isolated cube in a thick boundary layer is much larger at that orientation than for flow directions normal to the faces. An accurate electronic balance was used to determine the surface drag (and hence friction velocity u τ ) and pressure-tapped roughness elements allowed estimation of the zero plane displacement d . It is shown that the best logarithmic-law fits then generally require values of the von Kármán ‘constant’ κ significantly lower than its classical value of around 0.41. For a factor of six increase in the Reynolds number (from ), Reynolds number effects are shown to be very weak and, coupled with the form drag and total drag data, the results thus suggest that frictional contributions to the total surface drag are relatively small.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Boundaries</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Drag</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Measurement</subject><subject>Measurement techniques</subject><subject>Meteorology</subject><subject>Orientation</subject><subject>Reynolds number</subject><subject>Roughness</subject><subject>Urban areas</subject><subject>Wind</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMoOK7-AG8BEbxkTTpf3cdx_YQRDzuux1CTrgxZutNj0n2Yf2-GXkQEkRxCKs9bvFUvIS8Fvxac27dFcK0M46JhnZWGyUdkI7SVTCjbPCYbzrlhrRTqKXlWyn19WqH5htzdTiPSrwhlyThimgudAr1dcgCP9H2GI42Jfs8HSGx_PiF9Ny2ph3ymOzhjLhRmegc5TkuhP2Lq6TYdByzPyZMAQ8EXD_cV2X_8sL_5zHbfPn252e6YV1rMrAsA2PTCaG2U0hyVMgcrOsu9wSYYUNg0hwDc1zGssl3gPfpargUurbwib9a2pzz9XLDMbozF4zBAwurICWu5FKbh-v-osKLtWqsvXV_9hd5PS051jkqJatW0narU9UodYUAXU5jmDL6eHsfop4Qh1vpWGtXpVpquCsQq8HkqJWNwpxzHukonuLuE6NYQXQ3RXUJ0smpeP1iB4mEIGZKP5bewMVq11U_lmpUr9SsdMf9h-Z_NfwFkr6j1</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Claus, Jean</creator><creator>Krogstad, P.-Å.</creator><creator>Castro, Ian P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20121201</creationdate><title>Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles</title><author>Claus, Jean ; Krogstad, P.-Å. ; Castro, Ian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Boundaries</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Drag</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Measurement</topic><topic>Measurement techniques</topic><topic>Meteorology</topic><topic>Orientation</topic><topic>Reynolds number</topic><topic>Roughness</topic><topic>Urban areas</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Claus, Jean</creatorcontrib><creatorcontrib>Krogstad, P.-Å.</creatorcontrib><creatorcontrib>Castro, Ian P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Claus, Jean</au><au>Krogstad, P.-Å.</au><au>Castro, Ian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>145</volume><issue>3</issue><spage>407</spage><epage>422</epage><pages>407-422</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>Using experimental data obtained in naturally grown boundary layers over a generic urban-type roughness (height h ) it is shown that the surface drag is strongly dependent on the flow direction with respect to the roughness orientation. The variations with wind direction are accompanied by corresponding changes in the parameters contained in the usual logarithmic description of the flow in the near-wall inertial layer, , principally the roughness length z o , which can vary by a factor of around three. The maximum surface drag (and roughness length) occur when the flow direction is at an angle around 45° to the faces of the cubical roughness elements, consistent with the known fact that the drag of an isolated cube in a thick boundary layer is much larger at that orientation than for flow directions normal to the faces. An accurate electronic balance was used to determine the surface drag (and hence friction velocity u τ ) and pressure-tapped roughness elements allowed estimation of the zero plane displacement d . It is shown that the best logarithmic-law fits then generally require values of the von Kármán ‘constant’ κ significantly lower than its classical value of around 0.41. For a factor of six increase in the Reynolds number (from ), Reynolds number effects are shown to be very weak and, coupled with the form drag and total drag data, the results thus suggest that frictional contributions to the total surface drag are relatively small.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-012-9736-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2012-12, Vol.145 (3), p.407-422
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_1770316205
source Springer Nature
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Boundaries
Boundary layer
Boundary layers
Convection, turbulence, diffusion. Boundary layer structure and dynamics
Drag
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid dynamics
Fluid flow
Measurement
Measurement techniques
Meteorology
Orientation
Reynolds number
Roughness
Urban areas
Wind
title Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Measurements%20of%20Surface%20Drag%20in%20Urban-Type%20Boundary%20Layers%20at%20Various%20Wind%20Angles&rft.jtitle=Boundary-layer%20meteorology&rft.au=Claus,%20Jean&rft.date=2012-12-01&rft.volume=145&rft.issue=3&rft.spage=407&rft.epage=422&rft.pages=407-422&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-012-9736-3&rft_dat=%3Cgale_proqu%3EA364958369%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-9faae2d165564450e446b71970c6e2f6a4e22bfa0c1477479f0dec6a40c10373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1115566894&rft_id=info:pmid/&rft_galeid=A364958369&rfr_iscdi=true